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The exploratory data analysis and visualization are of great importance in
many areas of science and engineering. While in these areas, large amounts
of data requires to be analyzed. Therefore, a deep understanding of the
dimensionality reduction is needed in practical applications. The images of a
person’s face observed under different pose and lighting conditions can be
considered as points in a high-dimensional vector space. In order to judge the
similarities and detect the differences of these images, the dimensionality
reduction is required.
In this project, we order the faces by using the four algothrims, i.e., Diffusion
map, MDS-embedding , ISOMAP-embedding and LLE-embedding. It is found
that all the four algothrims can effectively capture the Euclidean structure of
the dataset. Besides, the ISOMAP is also capable of discovering the nonlinear
degrees of freedom of the dataset.

Introduction

Methods and Materials

 ISOMAP-embedding: ISOMAP is an extension of MDS, where pairwise
Euclidean distance data points are replaced by geodesic distances,
computed by graph shortest path distances. In this algorithm, first, the
graph shortest path distances is computed.
Second, is computed. Third, the eigenvalue
decomposition is computed. Last, the top d nonzero eigenvalues and
corresponding eigenvectors are computed.
LLE-embedding: This algorithm assumes that any data point in a high
dimensional ambient space can be a linear combination of data points in
its neighborhood. It is a local method as it involves data points in local
neighbors and hence a sparse eigenvector decomposition.

Methods and Materials

In this dimension reduction problem of ordering the faces, different
algorithms including linear embedding (MDS) and nonlinear embedding
methods(Diffsion map, isomap, LLE) are explored. As an extension of the MDS
method, the Isomap captures the geometric distances and can well describe
the high dimensional problem, which is superior to the MDS methods which
only capture two intrinsic features. The LLE method uses the neighbouring
data to reconstruct low dimensional embedding and such methods can offer
information of global geometry. Diffusion map as another nonlinear method,
maps the data to a diffusion space to preserve their diffusion distance. It can
well distinguish different images with a relative large time scale parameter. In
this specific face order problem, it seems that the non-linear embedding
algorithms can better describe intrinsic structures of the data.

Youtube link: https://youtu.be/0B3ywTWL40g

Discussions &Conclusions

Data description: The dataset contains 33 faces of the same person
(Y∈R112×92×33) in different angles. The pictures of the 33 faces are
shown below. To do data analysis, a data matrix , where n=33 and
p=10304 is created.
Diffusion map: Diffusion map is a non-linear dimensionality reduction
technique. The main idea is to map coordinates between data and
diffusion space to reorganize data according to the diffusion metric. In the
diffusion space the Euclidean distance approximates the diffusion distance
thus the dataset’s intrinsic underlying geometry can be preserved while
reducing dimensionality.
MDS embedding: MDS is used to translate information about the
pairwise distance among a set of n individuals into a configuration of n
points mapped into the Cartesian space. This algorithm places each object
into N-dimensional space. The goal of MDS is to find I vectors ∈RN and
then find an embedding from the I objects into RN. In the classical MDS
algothrim, first, , where H is a centering matrix is computed.
Second, Eigenvalue decomposition is computed. Third, choose top k
nonzero eigenvalues and corresponding eigenvector , where

with                         are computed. 

Results

Diffusion map 

Fig.3. MDS embedding (inset is eigenvalue plot)

MDS embedding 

Isomap

Fig.4. 2-D Isomap embedding

LLE

Fig.5. 2-D LLE embedding
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Fig.1. 33 faces of the same person in the dataset
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In MDS, the first two
components are used
because the first two
components explain roughly
80% of the total variance, as
indicated by the inset. It is
seen that MDS can
effectively capture the
Euclidean structure of the
faces. However, it fails to
detect the intrinsic three
dimensionality of the face
dataset.

It is seen from Fig. 4 that the
Isomap embedding can correctly
detects the three degrees of
freedom of the face images, while
the MDS embedding shown in the
previous Fig. 3 can not. In the
other words, Isomap has captured
the data’s perceptually relevant
structure.
Therefore, the Isomap algorithm
can manipulate high dimensional
observations in terms of their
intrinsic nonlinear degrees of
freedom.
To be specific, the residual
variance decreased with the
increase of the dimensionality, and
the selected 5 neighbor can be
detected in Fig.4. The selected
faced of this embedding is also
shown in Fig.4.

The LLE algorithm embedded
higher-dimensional data to lower
dimensions by reconstructing the
data from the neighboring data. In
this specific face order problem,
we selected 5 neighbors. We get
the embedded results by varying
the max embedding
dimensionality(dmax). For
example, dmax chosen as 2,3,4
embedding dimensionalities are
plotted in Fig .5. When dmax=2,
the embedding the shows a linear
trend and the faces are ordered
mainly based on the angles. And
the plot with dmax=3 shows a
similar trend. When dmax=4, the
variation between these faces are
maximized and the similar pictures
clustered.

t=1

t=5

t=30

Fig.2(a). Ordered faces with different time scale 
along first diffusion coordinate

Fig.2(b). Diffusion map embedding(t=30)

In diffusion map, time scale
parameter t highly influences
the results of this method.
Large t can better explore
the intrinsic similarities
among different images but
require more computational
cost. As is shown in the left
figure, for t=1 the faces are
not reasonably ordered
based on the angles. When t
increases to 5, they are
much better ordered.
Along the second diffusion
coordinate, no clear meaning
of the ordered faces can be
found yet.

https://youtu.be/0B3ywTWL40g

