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Introduction

Representation learning

Data representation plays an essential role in machine learning.

High-dimensional data often concentrate around a low dimensional
manifold.

Data representation methods can help us reduce the dimension and
extract useful information when building classifiers or other predictors.
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Methodology

Methodology

Three levels of representation learning methods:

linear dimension reduction methods: PCA and robust PCA

Non-linear dimensionality techniques: manifold learning

Isomap, Locally linear embedding (LLE) and t-distributed stochastic
neighbor embedding (tSNE)

Deep representation methods: variational autoencoder (VAE)
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Methodology

Our work

We explore three levels of representation learning methods:

linear: PCA and robust PCA
non-linear: manifold learning
deep: VAE

We apply these methods to a real single-cell expression data set.

We also give detailed analysis and comparison of different approaches.
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Gene expression analysis

Gene expression analysis

The Mouse Cortex Cells dataset contains

3,005 mouse cortex cells
558 genes
labels for 7 distinct cell types

Cell clustering: to identify the distinct cellular subtypes or states.

(1) Dimension reduction
(2) Clustering (k-means, Ward’s hierarchical clustering method)
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Gene expression analysis

Data reduction and visualization

(a) MDS (b) Isomap (c) tSNE

Figure 1: Visualization of the dataset
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Gene expression analysis

Data reduction and visualization

PCA and robust PCA

Top ten PCs and robust PCs
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Figure 2: Cumulative percentage of eigenvalues
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Gene expression analysis

Clustering

Performance measure: adjusted Rand index (ARI)

PCA + kmeans: 0.4030

RPCA + kmeans: 0.3817

This dataset is well preprocessed and is of high quality, the outliers may
be removed beforehand.
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Gene expression analysis

Clustering

Manifold learning (Isomap, LLE and tSNE) and VAE + k-means and
Ward’s hierarchical clustering
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Figure 3: ARI of k-means and Ward’s hierarchical clustering with respect to different
latent dimensions
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Gene expression analysis

Clustering visulization

Figure 4: Visualization of some clustering results
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Conclusion

Conclusion

We explore three levels of representation learning methods.

We apply various methods to single-cell expression analysis.

We also give detailed analysis and comparison of different approaches
as well as different settings of hyperparameters.

In conclusion, manifold learning and VAE outperform linear dimension-
ality reduction approaches on this dataset.
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Conclusion

Thank you.
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