
CSIC 5011 Final Project: Order the Faces via
Manifold Learning

Di LIU
Department of Mechanical and Aerospace Engineering
The Hong Kong University of Science and Technology

dliuah@connect.ust.hk

Meilan WANG
Department of Civil and Environmental Engineering

The Hong Kong University of Science and Technology
mwangau@connect.ust.hk

Xu HAN
Department of Physics

The Hong Kong University of Science and Technology
xhanah@connect.ust.hk

Abstract

This project is intended to order 33 images of the same person but with different face
directions. Several manifold learning techniques were employed (e.g. Diffusion
Map etc.). After comparing the results, we found that locally linear embedding
performed better than others in which number of components and neighbors are 2
and 5, respectively. We also conducted experiments to compare the performance
depending on hyper-parameter (number of components), by changing the number
of neighbors from 5 to 10. It was discovered that 5 neighbors provided the best
model performance.

1 Introduction

Face pose determination is an important area of research in human computer interaction (HCI). An
important problem in HCI is to determine one’s focus of attention (inattention or lack of attention).
This can be inferred from the person’s head orientation and gaze direction. Head directions can be
estimated from one’s face orientation. Moreover, a person’s state of mind and/or level of vigilance can
also be deduced from his/her face orientation. For example, tracking one’s face orientation through
multiple image frames allows us to detect the nodding behavior, which can be used to infer one’s
fatigue level. In summary, face pose estimation plays an important role in HCI [1].

Face pose estimation methods include model-based and face property-based (or appearance-based)
two categories. Model-based approaches assume a three-dimensional (3D) model of face which could
be recovered by establishing 2-3D features correspondences. Property-based approaches assume
there is causal-effect relationship between 3D face pose and certain properties of the facial image.

In this report, we try to explore how manifold learning methods contribute to appearance-based
methods so as to order head directions. The experiments were conducted on a small dataset, 33
images which are 33 angles of the same person. The goal of our experiment is to order the relative
head directions from left to right correctly matching the ground truth voted by our group members.

Preprint. Work in progress.

More than following the calculation steps suggested by the project requirement, we tested 9 prevailing
manifold learning methods to compare their performance on the relative head direction estimation.
And we also tested how hyper-parameter influenced on their performance.

The rest of the paper’s structure is as follows. In next section, we will briefly introduce the dataset. In
Section 3, we will describe the eight manifold learning methods which we have learned in class. In
Section 4, we will present the experiment results and evaluation results. In Section 5, there is a brief
summary and future work discussion.

2 Dataset

The given dataset contains 33 faces of the same person (Y ∈ R112×92×33) in different angles which
can obtained from the following website,

https://github.com/yao-lab/yao-lab.github.io/blob/master/data/face.mat

We then created a data matrix X ∈ Rn×p where n = 33, p = 112 × 92 = 10304.

3 Methods

3.1 Multi-dimensional scaling (MDS)

MDS is a method which aims to recover Euclidean coordinates in given pairwise distance metrics or
dissimilarities [2]. Given a set of data points x1, x2, ..., xn ∈ Rp , let

X = [x1, x2, ..., xn]p×n.

The distance between different samples is denoted as d2ij = ||xi − xj ||2 and then a squared distance
matrix Dij = d2ij is created.

Afterwards, we compute − 1
2HDH

T as B where H is the Householder centering matrix. By using
eigenvalue decomposition B = UΛUT with Λ = diag(λ1, ..., λn) where λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0,
we can choose the top k eigenvalues and corresponding eigenvectors to form the embedding data
point T̃k = UkΛ

1
2

k where
Uk = [u1, ..., uk], ui ∈ Rn

Λk = diag(λ1, ..., λk)

with λ1 ≥ λ2 ≥ ... ≥ λk > 0.

3.2 ISOMAP

ISOMAP is a extended method of MDS in that it uses pairwise geodesic distances between data
points and graph shortest path distances to reconstruct the data.

The first step is to construct a neighborhood graph G = (V,E, dij) where V = {xi : i = 1, ..., n},
E = {(i, j) : if j is a neighbor of i } and dij = d(xi, xj).

Next, we compute the graph shortest path distance

dij = minP=(xi,...xj)(||xi − xt1 ||+ ...+ ||xtk−1
− xj ||)

which connects i and j.

Then the following steps are the same as MDS,

(1) Compute K = − 1
2HDH

T (D:=[d2ij]), where H is the Householder centering matrix.

(2) Computer eigenvalue decomposition K = UΛUT with λ = diag(λ1, ..., λn) where λ1 ≥ λ2 ≥
... ≥ λn ≥ 0;

(3) Choose top k nonzero eigenvalues and corresponding eigenvectors as embedding coordinates

Yk = UkΛ
1
2

k

2

https://github.com/yao-lab/yao-lab.github.io/blob/master/data/face.mat

3.3 Locally linear embedding (LLE)

The central point of LLE is that any data point in a high dimensional space can be a linear combination
of data points in its neighborhood.

Given a graph G = (V,E), one can first do linear fitting. Namely, for each xi and its neighbors Ni,
solve

min∑
j∈Ni

wij=1

∥∥∥∥∥∥xi −
∑
j∈Ni

wijxj

∥∥∥∥∥∥
2

by ŵi(µ) = (Ci + µI)
−1

1 for some regularization parameter µ > 0 and wi = ŵi/ŵ
T
i 1.

The next step is to do global alignment by computing K = (I −W)T (I −W) where

Wij =

{
wij , j ∈ Ni
0, otherwise

The last step is to do eigenvalue decomposition K = UΛUT with Λ = diag (λ1, . . . , λn) where
λ1 ≥ λ2 ≥ . . . λn−1 > λn = 0. Then choose bottom k + 1 nonzero eigenvalues and their
corresponding eigenvectors with dropping the 0-constant eigenvalue, such that

Ud = [un−d, . . . , un−1] , uj ∈ Rn
Λd = diag (λn−d, . . . , λn−1)

. The embedding coordinate is defined as Yd = UdΛ
1
2

d .

3.4 Local Tangent Space Alignment(LTSA)

LTSA is a modified version of LLE. Its first step is to do local PCA, i.e. computing local SVD on
neighborhood of xi, xij ∈ N (xi),

X̃(i) = [xi1 − µi, . . . , xik − µi]
p×k

= Ũ (i)Σ̃
(
Ṽ (i)

)T
where µi =

∑k
j=1 xij .

The second step is to do tangent space alighment,

Kn×n =

n∑
i=1

SiWiW
T
i S

T
i , W k×k

i = I −GiGTi

wehere Sn×ki : [xi1 , . . . , xik] = [x1, . . . , xn]Sn×ki and Gi =
[
1/
√
k, Ṽ

(i)
1 , . . . , Ṽ

(i)
d

]k×(d+1)

.

Finally, we do eigenvalue decomposition K = UΛUT and find the smallest d+ 1 eigenvectors of
K with dropping the smallest one. The remaining d eigenvectors will give rise to d-mebedding
coordinates.

3.5 Modified LLE (MLLE)

MLLE is another method to improve the performance of LLE. It uses multiple weight vectors
projected from orthogonal complement of local PCA in each neighborhood. It replaces the weight
vector above by a weight matrix W ∈ Rki×si , a family of si weight vectors using bottom si
eigenvectors of Ci, Vi = [vki−si+1, ..., vki] ∈ Rki×si , such that

Wi = (1− αi)ωi(µ)1Tsi + ViH
T
i

where αi =
∥∥V Ti 1ki

∥∥
2
/
√
si and Hi is a Householder centering matrix. Equipped with this weight

matrix, one can set the objective function by simultaneously minimizing the residue over all recon-
struction weights:

min
Y

∑
i

si∑
l=1

∥∥∥∥∥∥yi −
∑
j∈Ni

Wi(j, l)yj

∥∥∥∥∥∥
2

=
∑
i

∥∥∥Y Ŵl

∥∥∥2
F

= trace

[
Y

(∑
i

ŴιŴ
T
l

)
Y T

]

3

where Ŵl is the embedding of Wi ∈ Rki×si into Rn×si ,

Ŵı(j, :) =

 −1Ts′i
, j = i

Wi, j ∈ Ni
0, otherwise

3.6 Hessian LLE (HLLE)

HLLE is also a method to solve the regularization problem of LLE. It revolves around a hessian-based
quadratic form at each neighborhood. Donoho and Grimes [3] proposed Hessian LLE (Eigenmap) in
search of

min
y⊥1

∫
‖Hy‖2 , ‖y‖ = 1

The basic algorithmic idea is as follows,

1. G is incomplete, often k-nearest neighbor graph.

2. Local SVD on neighborhood of xi, for xi ∈ Ni,

X̃(i) = [xi1 − µi, . . . , xik − µi]
p×k

= Ũ (i)Σ̃
(
Ṽ (i)

)T
where µi =

∑k
j=1 xij = 1

kXi1.

3. Null Hessian estimation: define

M =
[
1, Ṽ1, . . . , Ṽd, Ṽ

2
1 , Ṽ1Ṽ2, . . . , Ṽd−1Ṽd, Ṽ

2
d

]
∈ Rk×(1+d+(d+1))

where ṼiṼj =
[
ṼikṼjk

]T
∈ Rk.

Then perform a Gram-Schmidt Orthogonalization procedure on M get M̃ and the null Hessian[
H(i)

]T
=

[
last
(
d+ 1

2

)
columns of M̃

]
k× d+1

2

as the first d + 1 columns of M̃ consists an

orthonormal basis for the kernel of Hessian together with the constant vector.

Define a selection matrix S(i) ∈ Rn×k which selects those data in N (xi), and then the kernel matrix
is defined to be

K =

n∑
i=1

S(i)H(i)TS(i)T ∈ Rn×n

.

Find smallest d+ 1 eigenvectors of K and drop the smallest eigenvector, the remaining d eigenvectors
will give rise to a d dimensional embedding of data points

3.7 Diffusion map

Give a data set xi ∈ Rd, one can define a undirected weighted graph G = (V,E,W). V and E are
the same as before but W is a symmetric matrix,

Wij = Wji = exp(−d(xi, xj)
2

t
)

for i ∈ Ni, otherwise 0.

Then, let di =
∑n
j=1Wij and D = diag(di). A random walk on graph G can be defined through

Markov matrix,
L = D−1W − I

.

Finally, we do eigenvalue-decomposition of L and obtain the embedding coordinates.

4

3.8 t-distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE is a method which uses Student t-distribution or Cauchy distribution kernel instead of Gaussian
distribution kernel. The following are the same.

The experiments we conducted were implemented in Matlab and Python. The codes in Matlab
for ISOMAP and LLE were from Ref. [4], [5], respectively. Experiments for other methods were
conducted by using the sklearn.manifold library [6] in Python.

4 Results and Discussions

4.1 Ground truth

In order to evaluate the performance of different methods, a ground truth is needed since the original
dataset is out of order. At first, we voted for the order of which the woman’s head in the photo turns
from the left to the right as shown in Figure 1.

Figure 1: Ground truth of the ordered image.

4.2 Performance evaluation

Table 1: The performance evaluation metrics of all the methods without error analysis.

Original# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Ground truth 8 13 19 32 6 18 28 7 17 1 5 16 12 10 4 21

Diffusion Map 9 11 19 31 5 18 28 6 17 1 7 16 12 10 4 21
MDS 9 10 19 32 5 18 30 6 17 1 7 16 12 11 4 21

ISOMAP 7 13 19 32 5 18 28 10 17 1 6 16 12 9 4 21
LLE 8 13 19 32 5 18 28 7 17 1 6 16 12 10 4 21

MLLE 8 12 19 32 6 18 28 7 17 1 5 16 11 10 4 21
HLLE 8 13 19 32 6 18 28 7 17 2 5 16 12 10 4 21

Spectral Embedding 6 13 18 32 8 19 28 7 17 3 5 16 12 10 4 21
LTSA 8 13 19 32 6 18 28 7 17 2 5 16 12 10 4 21
t-SNE 8 12 20 30 14 22 23 10 17 1 18 16 5 2 6 9

Original# 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Ground truth 22 26 33 11 2 24 3 27 29 23 15 30 31 20 14 25 9

Diffusion Map 22 26 33 13 2 23 3 27 30 24 14 32 29 20 15 25 8
MDS 22 26 28 13 2 23 3 27 31 24 14 33 29 20 15 25 8

ISOMAP 22 26 33 11 2 24 3 27 29 23 14 30 31 20 15 25 8
LLE 22 26 33 11 2 23 3 27 29 24 14 30 31 20 15 25 9

MLLE 22 26 33 13 2 23 3 27 29 24 14 31 30 20 15 25 9
HLLE 22 26 33 11 1 23 3 27 29 24 14 31 30 20 15 25 9

Spectral Embedding 22 26 33 11 2 24 1 27 29 23 14 30 31 20 15 25 9
LTSA 22 26 33 11 1 23 3 27 29 24 14 31 30 20 15 25 9
t-SNE 33 25 24 27 15 11 4 32 29 21 19 28 31 13 7 26 3

For the sake of quantifying the similarity between each method’s result and ground truth, absolute
error was used. First, we labelled the original images according to the column index of the matrix
from the given dataset. Next, we recorded each photo’s position in the ground truth and the results
from different methods. Then for each original image, the absolute error was calculated as the
difference between the image’s position in ground truth and a specific method.

5

The entire performance evaluation metrics can be seen in Table 1. Then, total absolute error (TAE)
which sums up the absolute error for each image is shown here. The TAE for each method can be
obtained in Table 2.

Table 2: TAE of different methods. The first four values are based on Matlab codes while the latter
five values are from Python codes.

Methods Diffusion Map ISOMAP LLE MDS HLLE Spectral Emebedding LTSA MLLE t-SNE
TAE 20 10 6 30 8 12 8 10 164

Basically, we can observe that t-SNE has a much larger error than other methods, which suggests that
this method may not be suitable for this face ordering task. Apart from t-SNE, MDS has the largest
TAE among all the other methods. Then, the other 7 methods have relatively small TAE. Apparently,
LLE shows the best performance, which has a TAE of 6.

4.2.1 Results of MDS and ISOMAP

Considering that the methods we used are too many, we only take the results of MDS and ISOMAP
for examples. For other methods, we did the same process.

Figure 2(a) shows that the first two eigenvalues has explained a large portion of the total variation.
The embedding result on the first two eigenvectors is shown Figure 2(b).

(a) (b)

Figure 2: Analysis of MDS. (a)Explained variance as a function of number of components in MDS.
(b) 2D embedding graph.

As can be seen, the scatter plot exhibits a ‘v’ shape, one possible explanation for eigenvector 2 is that
it measures the yellow area on the top left and right corner. When the head slowly rotates from right
to left, those yellow areas are filled by blue hair. But as the head continue to rotate to the left, the
yellow areas reappear. The result sorted by the first eigenvector is shown in Figure 3(a).

(a) (b)

Figure 3: Ordered face image of (a)MDS and (b)ISOMAP.

6

The ISOMAP was applied by using Tenenbaum’s Matlab code with k = 5 nearest neighbors graph.
The residual variance is shown in Figure 4(a) and two dimensional Isomap embedding result with
neighbor graph is shown in Figure 4(b). Figure 3(b) illustrates the order sorted by the first eigenvector.

(a) (b)

Figure 4: Analysis of ISOMAP. (a)Residual variance as a function of number of components in MDS.
(b)2D embedding graph.

4.2.2 Hyper-parameter study

Moreover, we explored the effect of number of neighbors (k) on the sorting performance for each
method. We tested for k =5 to 10, the methods were all applied with sklearn.manifold library.
Compared with the other methods, LLE tends to be affected by k more than others. In terms of
performance versus number of neighbors, we can find that 5 tends to be the best for most methods.

Figure 5: TAE as a function of number of neighbors in different methods.

4.3 2D embedding graph

Afterwards, we compared the 2D embedding graph for different methods based on sklearn.manifold
library. We assigned the number of neighbors to be 5 in our experiments. The results can be seen
in Figure 6. Obviously, LLE and Spectral embedding seem to better than others in terms of x-axis
which represents the first component. With the results before taken into consideration (i.e. TAE of
different methods), we may know that LLE should be the best.

7

Figure 6: Manifold learning with 33 data points, 5 neighbors.

Inspired by the results in Figure 5, we also studied the effect of number of neighbors on the
2D embedding graph. Here, we only take LLE for an example (see Figure 7). One interesting
phenomenon is that the shape of the graph can be both ’V’ and ’Λ’. However, this phenomenon
makes no difference to the conclusion. The focus here is the discrepancy between different points in
the figure. As the number of neighbors increases, more and more points tend to be indistinguishable.
This provides us with another way to understand that the number of neighbors of 5 should behave the
best.

Figure 7: Spectral embedding with different number of neighbors.

5 Conclusion and future work

In summary, almost all the methods we explored show reasonable sorting order except t-SNE. We
quantified the sorting performance by calculating the total absolute error between different methods’
results and ground truth and found that LLE exhibited the best performance. What’s more, a parameter
study was performed on the number of nearest neighbor k and 5 proved to be the best.

For future work, these methods can be applied to a more complicated dataset, (e.g. head images with
both turning and nodding motion). By adding one degree of freedom, more eigenvectors may be
involved in deciding the order. Last but not least, more techniques can be combined with the methods
in this report to achieve emotion detection and so on.

8

Contributions

Di LIU: code in Matlab (Diffusion map, MDS, ISOMAP, LLE), ground truth collection and perfor-
mance metrics decision, result organization, report (4.1, 4.2 and 5), ppt & presentation.

Meilan WANG: code in Python (8 methods, hyper-parameter test and performance evaluation), report
(abstract, 1, 2, 3.5, 3.6, 4.2 and 4.3), ppt & presentation.

Xu HAN: code in Python (6 methods), report (3 (exclude 3.5, 3.6) and 4.3, proofreading and format
modifying)

References

[1] Ji, Qiang. 3D face pose estimation and tracking from a monocular camera, Image and vision computing,
20.7 (2002): 499-511.

[2] G. Young and A. S. Householder, A note on multidimensional psycho-physical analysis, Psychometrika 6
(1941), 331–333.

[3] David L. Donoho and Carrie Grimes. Hessian eigenmaps: Locally linear embedding techniques for high-
dimensional data, Proceedings of the National Academy of Sciences of the United States of America 100 (2003),
no. 10, 5591-5596.

[4] https://github.com/yao-lab/yao-lab.github.io/blob/master/data/isomapII.m

[5] https://github.com/yao-lab/yao-lab.github.io/blob/master/data/lle.m

[6] Pedregosa et al., Scikit-learn: Machine Learning in Python, JMLR 12, pp. 2825-2830, 2011.

9

https://github.com/yao-lab/yao-lab.github.io/blob/master/data/isomapII.m
https://github.com/yao-lab/yao-lab.github.io/blob/master/data/lle.m

	Introduction
	Dataset
	Methods
	Multi-dimensional scaling (MDS)
	ISOMAP
	Locally linear embedding (LLE)
	Local Tangent Space Alignment(LTSA)
	Modified LLE (MLLE)
	Hessian LLE (HLLE)
	Diffusion map
	t-distributed Stochastic Neighbor Embedding (t-SNE)

	Results and Discussions
	Ground truth
	Performance evaluation
	Results of MDS and ISOMAP
	Hyper-parameter study

	2D embedding graph

	Conclusion and future work

