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Introducࢢon

Image classificaࢢon is an important task in machine
learning. In pracࢢce, high dimensionality o[en
makes it difficult to apply classical models. For in-
stance, it may slow down the algorithm or limit the
predicࢢon accuracy due to the redundant informa-
onࢢ within the training data. Therefore, dimension-
ality reducࢢon of image features plays a crucial role
in image retrieval and classificaࢢon tasks. In this
project, we
• explore the power of dimension reducࢢon tech-
niques to improve image classificaࢢon accuracy
more efficiently,
• and briefly analyzed the reasons behind.

Data

We analyze the Hand-wri�en Digits dataset which
contains ƈҚ× ƈҚ gray images of ƈƇ handwri�en dig-
its. It consists of ƍƉƎƈ training examples, and ƉƇƇƍ
tesࢢng examples. The following figure visualizes
the training set in two dimension using mulࢢdimen-
sional scaling (MDS), which moࢢvates us to imple-
ment dimension reducࢢon techniques to capture
the essenࢢal informaࢢon of image data.

Methodology

We implement and compare both geometric dimension reducࢢon techniques such as principal component
analysis (PCA), as well as regularized esࢢmators including Lasso, Ridge and Elasࢢc Net. Specifically, the regular-
izaࢢon penalty is λ((ƈ− α)∥β∥ƉƉ/Ɖ+ α∥β∥ƈ), where β is the regression coefficients, and α = Ƈ for Lasso, ƈ for
Ridge and Ƈ.ƌ for Elasࢢc Net. We combine these methods with support-vector machine (SVM) andmulࢢnomial
logisࢢc regression (MLR), two commonly used classificaࢢon models in machine learning and staࢢsࢢcs.

Experiment ƈ

We first explore the effect of PCA under different di-
mension to sample size raࢢos. Specifically, we ap-
ply PCA to training sets with various sizes and se-
lect ƍ, ƈƍ, ƌƌ principal components (PCs) such that
the percentage of variance explained is greater than
ƌƇ%, ƍƇ% and ƎƇ% respecࢢvely. Then, we use
these PCs as new features to implement SVM.
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•When the sample size becomes large enough, pca
ƍƇ% and ƎƇ% have similar or even be�er perfor-
mance than the original data, suggesࢢng that PCA
can well capture the essenࢢal pa�ern of the data.
•Meanwhile, using a few PCs as features signifi-
cantly reduces the training ,meࢢ leading to more
efficient training.
•We analyze that the reason why PC SVM behaves
less saࢢsfying with a small sample size is that in
high dimensional seࢰngs, sample mean and sam-
ple covariance obtain higher risk, and PCAmay fail
to capture the signals.

Experiment Ɖ

We then consider biased esࢢmators by regulariza-
,onࢢ Lasso, Ridge and Elasࢢc Net of which the theo-
ries are relaࢢvely well established for MLR. We ran-
domly split data into training and tesࢢng sets as
қƇ% : ƉƇ% and implement the standard MLE and
the three biased esࢢmators. The tuning parameter
is chosen based on ƈƇ-fold cross-validaࢢon. Repeat-
ing this procedure for ƋƇ ,mesࢢ we create the box-
plots for predicࢢon accuracy of different methods.
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•All the regularized esࢢmators generalize be�er
than the standard model. This implies that the
underlying structure of the regression model is
sparse, which coincides with the intuiࢢon that
only a few pixels ma�er to disࢢnguish the digits.
• Ridge behaves worse than others since it only
shrinks the coefficients but not to zero.
• PC regression (with first ƌƇ PCs) performs well,
consistent with experiments ƈ.

Experiment Ɗ

In many high-dimensional cases, there exists some
latent confounding variables affecࢢng both predic-
tors and response, leading to a small but dense per-
turbaࢢon on the sparse structure. We regress out
the first ƌ PCs in hope of removing the hidden con-
founding effects. The figure in Exp. Ɖ shows
•without penalty (PC.Adjust), the model makes no
different from the standard MLR;
•with Lasso penalty (PC.Adjust.Lasso), it even
slightly outperforms standard Lasso, which is po-
tenࢢally because this deconfounding adjustment
improves the irrepresentable condiࢢon for Lasso
to achieve variable selecࢢon consistency.

Conclusion and Future Work

For both geometric dimension reducࢢon tech-
niques and regularized esࢢmators, we conduct ex-
periments to demonstrate how they represent sig-
nals from data, leading to more effecࢢve and effi-
cient classificaࢢon performance. We also analyze
the potenࢢal theoreࢢcal reason supporࢢng the re-
sults.

In the future, weplan to exploremore in high dimen-
sional seࢰng, i.e., when dimension exceeds sam-
ple size. Aimed at the curse of dimensionality, we
will trymoremethods like James-Stein esࢢmate and
non-convex penalty.
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