Dimension reduction methods to improve image classification
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Image classification is an important task in machine
learning. In practice, high dimensionality often
makes it difficult to apply classical models. For in-
stance, it may slow down the algorithm or limit the
prediction accuracy due to the redundant informa-
tion within the training data. Therefore, dimension-
ality reduction of image features plays a crucial role
In image retrieval and classification tasks. In this
project, we
e explore the power of dimension reduction tech-
niques to improve image classification accuracy

more efficiently,

e and briefly analyzed the reasons behind.

We analyze the Hand-written Digits dataset which
contains 16 X 16 gray images of 10 handwritten dig-
its. It consists of 7291 training examples, and 2007
testing examples. The following figure visualizes
the training set in two dimension using multidimen-
sional scaling (MDS), which motivates us to imple-
ment dimension reduction techniques to capture
the essential information of image data.

We implement and compare both geometric dimension reduction techniques such as principal component

analysis (PCA), as well as regularized estimators including Lasso, Ridge and Elastic Net. Specifically, the regular-

ization penalty is A((1— O()HﬁH;/Z + al|B][1), where B is the regression coefficients, and o = O for Lasso, 1 for

Ridge and 0.5 for Elastic Net. We combine these methods with support-vector machine (SVM) and multinomial

logistic regression (MLR), two commonly used classification models in machine learning and statistics.

Experiment 1

We first explore the effect of PCA under different di-
mension to sample size ratios. Specifically, we ap-

ply PCA to training sets with various sizes and se-
lect 7, 17, 55 principal components (PCs) such that
the percentage of variance explained is greater than
50%, 70% and 90% respectively. Then, we use
these PCs as new features to implement SVM.
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e \When the sample size becomes large enough, pca
70% and 90% have similar or even better perfor-

mance than the original data, suggesting that PCA

can well capture the essential pattern of the data.

e Meanwhile, using a few PCs as features signifi-
cantly reduces the training time, leading to more
efficient training.

e We analyze that the reason why PC SVM behaves

ess satisfying with a small sample size is that in

nigh dimensional settings, sample mean and sam-
ple covariance obtain higher risk, and PCA may fail
to capture the signals.

Experiment 2

We then consider biased estimators by regulariza-
tion, Lasso, Ridge and Elastic Net of which the theo-
ries are relatively well established for MLR. We ran-
domly split data into training and testing sets as
80% : 20% and implement the standard MLE and
the three biased estimators. The tuning parameter
Is chosen based on 10-fold cross-validation. Repeat-
Ing this procedure for 40 times, we create the box-
plots for prediction accuracy of different methods.
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e All the regularized estimators generalize better
than the standard model. This implies that the
underlying structure of the regression model is
sparse, which coincides with the intuition that
only a few pixels matter to distinguish the digits.

e Ridge behaves worse than others since it only
shrinks the coefficients but not to zero.

e PC regression (with first 50 PCs) performs well,
consistent with experiments 1.

In many high-dimensional cases, there exists some
latent confounding variables affecting both predic-
tors and response, leading to a small but dense per-
turbation on the sparse structure. We regress out
the first 5 PCs in hope of removing the hidden con-
founding effects. The figure in Exp. 2 shows

e without penalty (PC.Adjust), the model makes no
different from the standard MLR;

e with Lasso penalty (PC.Adjust.Lasso), it even

slightly outperforms standard Lasso, which is po-
tentially because this deconfounding adjustment
improves the irrepresentable condition for Lasso
to achieve variable selection consistency.

Conclusion and Future Work

For both geometric dimension reduction tech-
niques and regularized estimators, we conduct ex-
periments to demonstrate how they represent sig-
nals from data, leading to more effective and effi-
cient classification performance. We also analyze
the potential theoretical reason supporting the re-
sults.

In the future, we plan to explore more in high dimen-
sional setting, i.e., when dimension exceeds sam-
ple size. Aimed at the curse of dimensionality, we
will try more methods like James-Stein estimate and
non-convex penalty.
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