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Data dimension reduction is very important to analyzing the given 
data and predicting the unknown result. So far, we have learnt several 
methods to do data dimension reduction. PCA , a typical data 
dimension reduction strategy, could be used to deal with the 
condition that the number of dimension (p) of data is smaller than 
that of samples (n). When p is largely greater than n, we cannot rely 
on this method but turn to others in order to obtain a more reasonable 
predicted result. In this project, I adopted PCA to analyze the 
SNP500 data in 4 consecutive years. It was found that PCA could not 
effectively reduce the dimension of this dataset. Therefore, we then 
directly used the dataset to do the prediction of return with random 
forest regression and  neural network. The performance of both 
models will be evaluated and compared. 

INTRODUCTION

SNP500	DATASET

Principle component analysis (PCA) invented by Pearson [1] and 
Hotelling [2], is the most widely used method for dimension 
reduction with high dimensional Euclidean data. 
Give a dataset as 𝑋 = [𝑥%, 𝑥', … , 𝑥)] ∈ ℝ-×), where 𝑛 is the number 
of samples and p is the dimension, in order to find a 𝑘-dimensional 
affine space in  ℝ- to best approximate those 𝑛 samples, the affine 
space can be parameterized by 𝜇 + 𝑈𝛽 such that	𝑈 =
[𝑢%, 𝑢', … , 𝑢)] ∈ ℝ-×7 consists of
𝑘-columns of an orthonormal basis of the affine space and 𝛽 is the 
coordinate under this affine space. The best approximation in terms 
of Euclidean distance is given by the optimization problem,

min;,<,= ∑ ||𝑥@ − (𝜇 + 𝑈𝛽@)||')
@D%  

where 𝑈E𝑈 = 𝐼- and ∑ 𝛽@)
@D% = 0. After deduction, 𝜇 is found to be 

the sample mean of all observations and 𝑈 is the top 𝑘 left singular 
vectors of the of 𝑈H in the singular value decomposition of 𝑋I = 𝑋 −
𝜇. Finally, the coordinate of the affine space can be obtained by 𝛽@ =
𝑈E(𝑥@ − 𝜇). 
Random forest regression is an ensemble learning method for 
regression by constructing a multitude of decision trees at training 
time and outputting the mean prediction of the individual trees [3][4].
Neural network itself is not and algorithm, but rather a framework for 
many different machine learning algorithms to work together and 
process complex data inputs [5]. These systems learn to perform 
tasks by considering examples without any pre-designed programs. 
Apart from the input and output layers, there are still some hidden 
layers. In these hidden layers, the connection of connected units are 
called neurons. With bias and weights and the activation function, 
each neuron is then given a value with suitable optimizer. In this 
project, the hidden layer was set to 2 and the activation function was 
set to relu. 

METHODS

As is shown in Fig. 1, the number of stocks in class ‘ts’ which is 
abbreviated for ‘Telecommunications Services’ is only 6. Therefore, 
we exclude this class in our PCA analysis. I conducted PCA analysis 
on 9 different subsets. The result can be seen in Fig. 3. It was 
discovered that the first PCA component in most classes accounts for 
5% to 10% explained variance ratio. Even the largest explained 
variance ratio of ‘Materials’ class is only 23%. In this class, the 
explained variance ratio for the second PCA component is 12%. The 
comparison can be further studied in Fig. 4, which is a scatter plot of 
two components. Since the data is centered and scaled when 
employing PCA, we can see the center of the two components is the 
origin. And the scale of the first component is a little larger than that 
of the second component, which can be guaranteed by the explained 
variance ratio. Furthermore, in order to obtain a 95% total explained 
variance ratio, we have to include more than 20 components. 
However, the total number of raw dimension of this class is only 29. 
Then, as as to predict the return in a reasonable way, I have to take all 
these features into consideration. After using random forest 
regression model to predict the return of the stock in the last column, 
I can obtain the accuracy of the result, which is represented by mean 
absolute error (MAE).  The cross-validation strategy was applied to 
improve the accuracy, i.e. reduce the mean absolute error. Apart from 
this model, I also did the prediction by using the neural network. 
Apparently, compared to that of random forest regression, the 
performance of neural network exhibits higher ranges of MAE and 
even a strange point that it is zero when it comes to ’cs’ class. 
Namely, the random forest regression can provide very stable results 
in different classes since their MAE are around 0.01. 

RESULTS	AND	DISCUSSIONS CONCLUSIONS

To summarize, PCA cannot effectively reduce the dimension of our 
processed return dataset. Since then, we have to use all the given 
features to do the prediction on the last column’s stock’s return. 
By applying two different models, we find that random forest 
regression is able to give a more stable result in different classes. It is 
meaningful to obtain such a good model with finite features. Based 
on the predicted return, we can adopt some strategies in the stock 
market to make profits. 
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The SNP500 dataset contains 452 different stocks’ closed prices in 
1258 consecutive market days. Based on the class information of the 
companies, we can divide the whole dataset into 10 subsets. The 
volume of each subset can be seen below in Fig. 1. Then, for each 
subset, we calculated the return by using the following formula:

	𝑅 = 	
𝑝LM% − 𝑝L

𝑝L
where 𝑝L and 𝑝LM% represent the closed price of two consecutive 
market days respectively. By transferring the closed price to return, it 
is much easier for us to capture the unusual change in the stock 
market (see Fig. 2 ‘MMM’ for example). Those unusual changes can 
be caused by major events of the corresponding companies. Those 
major events include stock split, dividend and etc. Thus we did some 
processing to those data with unusual change to obtain a more 
reasonable dataset. Finally, in each dataset, we constructed a dataset 
of 1258 samples where different stocks’ returns are defined as 
features.
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Fig. 1: The number of stocks as a function of 10 different classes.

Fig. 2: The return as a function of time. Three stocks are included.

Fig. 3: The explained variance ratio as a function of  
PCA component.

Fig. 4: The second PCA component versus the first PCA component.

Fig. 5: The mean absolute error versus different classes.


