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Hodge Decomposition

m Vector calculus: Helmholtz's decomposition, ie. vector fields
on nice domains may be resolved into irrotational (curl-free)
and solenoidal (divergence-free) component vector fields

F=—-Vp+V XA

@ scalar potential, A vector potential.

m Linear algebra: additive orthogonal decomposition of a
skew-symmetric matrix into three skew-symmetric matrices

W=W + W+ W3

W; =vel —ev’, W, clique-consistent, W3 inconsistent.

m Graph theory: orthogonal decomposition of network flows
into acyclic and cyclic components.



Example I: Visual Image Patches -
Point Cloud Data in Metric Spaces

Ann Lee, Kim Pedersen, David Mumford (2003) studies statistical
properties of 3x3 high contrast image patches of natural images
(from Van Heteran’s database)

Gunnar Carlsson, Vin de Silva, Tigran Ishkhanov, Afra Zomorodian
(2004-present) found those image patches concentrate around a 2-
dimensional klein bottle imbedded in 7-sphere

They build up simplicial complex from point cloud data

1-D Harmonic flows actually focus on densest region -- 3 major
circles

e, ez 83 64 e5 86 e{, es



1-D Harmonic Flows on the space
of 3x3 Image Patches

I 1% T ?

| 4 oy } « Left Upper: Klein Bottle
AN |l 7 = N\ of 3x3 Image Patch

I = - { Space (Courtesy of

I l L Carlsson-Ishkhanov,

[\ i—4 = AN 2007)

 Left Lower: Harmonic
flows focus on 3 major
circles where most of
data concentrate

Some new theory: Bartholdi-Schick-
Smale-Smale, 2010, “Hodge Theory
on Metric Spaces”, preprint.




Here we will focus on "Ranking”, or
"Preference Aggregation” ...

Psychology: L. L. Thurstone (1928) (scaling), et al.

Statistics: M. Kendall (1930s, rank corellation), F. Mosteller,
Bradley-Terry,..., P. Diaconis (group theory), et al.

Economics: Condorcet (1785), Borda, K. Arrow, A. Sen
(voting and social choice theory, Nobel Laureates) et
al.

Computer Science: Google’s PageRank, Recommendation
In E-commerce, et al.



Had William Hodge met Maurice Kendall
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Thurstone's Crime Scaling in 1928

TABLE 1.
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Abortion. . ........ .... .323 .338 .211 .128 .238 ..244 .245 212 .760 .318 .222 .191 .256 .822 .143 .419 .174 .045
Adultery .. ....... 677 .... 415 .242 172 .281 .285 .253 .274 .863 .365 .207 .182 .245 .925 .143 .589 .204 .034
Arson. . ... 662 585 ... 260 .136 .226 .321 .348 .254 017 .563 .215 .144 .349 -.944 .140 .716 .170 .019
Assault and battery 789 757 .T40 ... .379 .515 .556 .485 .534 .070 .743 .385 .385 .587 .947 .344 .785 .346 .072
Bootlegging . . .872 .828 .864 .621 .... 764 .745 .738 .754 955 .924 .678 .506 .728 .985 .527 .871 .576 .116
Burglary.......... 762 .719 .774 485 .236 .... .593 .605 .580 .981 .856 .333 .322 .478 981 .221 .769 .284 .027
Counterfeiting . . . .. 56 715 679 444 255 407 .... .540 .488 .947 .804 .303 .284 .532 .963 .199 .756 .215 .042
Embezzlement.. ... 755 .747 .652 515 262 395 460 ... .350 .958 .752 .305 .248 .474 977 141 .774 .251 .049
Forgery........... .788 .726 .746 .466 .246 .420 .512 650 .... .951 .819 .343 320 1534 966 .195 .820 .260 .035
Homicide.......... 240 137 .083 .030 .045 .019 .053 .042 .049 .... .083 .030 .034 .079 .441 .027 .181 .026 .011
Kidpapping....... 682 635 .437 .257 .076 .144 .196 .248 .181 .917 .... .170 .06 .288 .902 ,098 .595 .086 .026
Larceny . ......... .778 .793 .785 .615 .322 .667 .697 .695 .657 - .970 830 .... .348 .648 .970 .268 .848 .365 .053
Libel s s ¢ susosereamoes 809 818 .855 .615 .494 .678 .716 .752 .680 .966 .894 .652 .... .702 .981 .530 .886 .456 .067
POrJury ass « v suporasores 744 755 651 413 272 522 467 .526 .466 .921 712 .352 .298 .... .951 .204 .767 .222 .015
Rape. . 178 .075 .056 .033 015 .019 .037 .023 .034 .559 .098 .030 .019 .049 .... .019 076 .023 .015
Receiv’g stolen goods .857 .857 .860 .656 .473 .779 .801 .859 .805 .973 .902 .732 .470 .796 .981 .... .875 4525 .061
Seduetion. ... .. 581 411 284 215 .129 231 .244 2926 .180 .819 .405 .152 .114 .233 924 .125 .... .121 .023
Smugglmg C..... .826 .796 .830 .654 .424 716 .783 .749 .740 .974 .91t .635 .544 .778 977 475 878 .... .037
Vagraney. ........ .955 .966 0981 .928 .884 .973 .958 .931 .965 .989 .974 .947 .933 .985 .985 .939 977 .963 ....

»Can we learn a scale for crimes from pairwise comparisons?
» Similar modern problem: wine taste, video quality evaluation,



Ranking in Economics

(3,3) (0,5)
(5,0) (1,1)

Prisoner’s dilemma in Game Theory, (Flood-Dresher-Tucker 1950)

A>B>C B>C>A C>A>B

Voting theory and social choice

» Condorcet (1785), Borda (1700s)

» Kenneth Arrow (1972 Nobel Memorial Prize in Economics)
» Amartya Sen (1998 Nobel Memorial Prize in Economics)



Ranking on Internet

«  “Multicriteria” ranking/decision systems
— Amazon or Netflix’'s recommendation system (user-product)
— Interest ranking in social networks (person-interest)
— S&P index (time-price)
— Voting (voter-candidate)
* “Peer-review” systems
— Publication citation systems (paper-paper)
— Google’s webpage ranking (web-web)
— eBay’s reputation system (customer-customer)

mv1 mv2 mv3
usri 1
usr2 2 5
usr3 - - 4
usr4 3 2 5 2
PageRank




Clicks implies preference




Characteristics

« Aforementioned ranking data are often
— Incomplete: typically about 1%
— Imbalanced: heterogeneously distributed votes
— Cardinal: given in terms of scores or stochastic choice
- Pairwise ranking on graphs: implicitly or explicitly, ranking data
may be viewed to live on a simple graph G=(V,E), where
— V: set of alternatives (webpages, products, etc.) to be ranked
— E: pairs of alternatives comparable

Look at Hodge decomposition of pairwise comparison edge flows...



Example I: Pagerank

* Model assumption:
— A Markov chain random walk on
networks, subject to the link structure
» Algorithm [Brin-Page’98]
— Choose Link matrix L, where L(i,j)=#
links from i to j.
— Markov matrix M=D-' L, where D = eT
L, e is the all-one vector.
— Random Surfer model: E is all-one
matrix
— PageRank model: P =c M + (1-c) E/n,
where ¢ = 0.85 chosen by Google.

— Pagerank vector: the primary
eigenvector v, such that PT v, = v,

Note: SVD decomposition of L gives HITS [Kleinberg’99] algorithm.

Problem: Can we drop Markov Chain model assumption?



Another View on Pagerank

Define pairwise ranking:

P

]

= —w
P

JI

W, = log ji

Where P is the Pagerank Markov matrix.

Claim: if P is a reversible Markov chain, i.e.

ni])zj = ﬂiji

Then ) 1
w, =logm, —log,



Example IT:
Netflix Customer-Product Rating

Example (Netflix Customer-Product Rating)
@ 480189-by-17770 customer-product rating matrix X
e X is incomplete: 98.82% of values missing

However,
@ pairwise comparison graph G = (V, E) is very dense!
@ only 0.22% edges are missed, almost a complete graph

@ rank aggregation may be carried out without estimating missing
values

@ imbalanced: number of raters on e € E varies

Caveat: we are not trying to solve the Netflix prize problem



Rank Aggregation

The first order statistics, mean
score for each product, is often
inadequate because of the
following:

— most customers would rate
just a very small portion of
the products

— different products might
have different raters,
whence mean scores
involve noise due to
arbitrary individual rating
scales (right figure)

How about high order statistics?

Average Score

Shakespeare in Love

20 40 S0




From 1st order to 2nd order:
Pairwise Ranking

@ Linear Model: average score difference between product / and j over
all customers who have rated both of them,

e 2akXig — Xii)
J #{k : Xk,',ij exist}'

Invariant up to translation.

@ Log-linear Model: when all the scores are positive, the logarithmic
average score ratio,

_ 2(log Xyj — log Xi)
#{k : Xk,',ij exist} '

Wij

Invariant up to a multiplicative constant.



Pairwise Ranking Continued

@ Linear Probability Model: the probability that product j is preferred
to 7/ in excess of a purely random choice,

1
wijj = Pl’{k : ij > Xk,'} — 5

Invariant up to monotone transformation.

@ Bradley-Terry Model: logarithmic odd ratio (logit)

Invariant up to monotone transformation.



Skew-Symmetric Matrices of Pairwise Ranking

Recall skew-symmetric matrices: W € R"*", wT = —Ww:
o every A € R™" decomposable into A=S+ W, S=(A+AT)/2
symmetric, W = (A — AT)/2 skew-symmetric
o W = {skew-symmetric matrices} = A?(R) = 0,(R)

All previous models induce (sparse) skew-symmetric matrices of size
|V|-by-| V|

—w;i if {i,j} € E
Wijj = .
7 otherwise

where G = (V, E) is a pairwise comparison graph.
Note: such a skew-symmetric matrix induces a pairwise ranking flow on
graph G.



Pairwise Ranking of Top 10 IMDB Movies
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« Pairwise ranking graph flow among top 10 IMDB movies



Web Link among Chinese Universities

2002, http://cybermetrics.wlv.ac.uk/database/stats/data

Link structure correlated with Research Ranking?



Classical Ordinal Rank
Aggregation Problem

m Problem: given a set of partial /total order {>;: i =1,...,n}
on a common set V, find

(t‘l) ceey tn) Ht*a

as a partial order on V/, satisfying certain optimal condition.

m Examples:
voting
Social Choice Theory



Rank Aggregation Problem

Difficulties:

@ Arrow's impossibility theorem
@ Kemeny-Snell optimal ordering is NP-hard to compute

@ Harmonic analysis on &, is impractical for large n since |S,| = n!

Our approach:

Problem
Does there exist a global ranking function, v : V — R, such that

wij = vj — v; =: 6o(v)(i,j)?

Equivalently, does there exists a scalar field v : V — R whose gradient
field gives the flow w? ie. is w integrable?

Utility theory for preference.



Answer: Not Always!

Multivariate calculus: there are non-integrable vector fields; cf. the film A
Beautiful Mind-:
A={F:R3\ X - R3| F smooth}, B={F=Vg},
dim(A/B) =7

Similarly here,

Figure: No global ranking v gives wjj = v; — v;: (@) triangular cyclic, note
wag + wgc + wea # 0; (b) it contains a 4-node cyclic flow
A— C— D — E — A, note on a 3-clique {A, B, C} (also {A, E, F}),

wag + wac +wca =0



Triangular Transitivity

Fact

W = [wj;] skew symmetric associated with graph G = (V,E). If

wijj = vj — v; for all {i,j} € E, then wjj + wjx + wi; = 0 for all 3-cliques
{i,j, k}.

Transitivity subspace:

{W skew symmetric | wj; + wj + wy; = 0 for all 3-cliques}

Example in the last slide, (a) lies outside; (b) lies in this subspace, but not
a gradient flow.

Ordinal intransitivity: a>b>c>a
Cardinal intransitivity: w,,+w, +w,, =0




Hodge Decomposition: Matrix Theoretic

A skew-symmetric matrix W associated with G can be decomposed
uniquely
W = W1 + W2 —+ W3

where
o W] satisfies
> ‘integrable’: W;(i,j) = v; — v; for some v : V — R.

o W5 satisfies

> ‘curl free': Wy(i,j) + Wa(j, k) + Wa(k, i) = 0 for all (i,/, k) 3-clique;
> ‘divergence free’: ). ycg Wa(i,j) =0

o W3_L W1 and W3J_ W2.



Hodge Decomposition: Graph Theoretic

Orthogonal decomposition of network flows on G into
gradient flow + globally cyclic + locally cyclic

where the first two components make up transitive component and

o gradient flow is integrable to give a global ranking
o example (b) is locally (triangularly) acyclic, but cyclic on large scale

o example (a) is locally (triangularly) cyclic



1-D Hodge (Helmoholz) Decomposition

Cartoon
Locally consistent Locally inconsistent
Gradlent flow Harmonic flow Curl row
Y Y
Globally consistent Globally inconsistent

Courtesy of Asu Ozdaglar, MIT



Combinatorial Hodge Theory:
Geometric Analysis on Graphs
(and Complexes)

B (Z ) L& JUAT 5 7



Combinatorial Hodge Theory

» Build a simplicial complex (Graph as 1-skeleton) from data
o Clique complex (Cech, Vietoris-Rips, Witness, ...)
» Functions on simplicial complex as alternating forms
o global ranking as O-form on vertices
o pairwise ranking as 1-form on edges
» Boundary/coboundary operators
o gradient vs. divergence
o curl vs. triangular boundary
» Combinatorial Laplacians and Hodge Decomposition



Cliqgue Complex of a Graph

Extend graph G to a simplicial complex K(G) by attaching triangles
@ O-simplices Ko(G): V
o l-simplices K1(G): E
e 2-simplices K2(G): triangles {/,j, k} such that every edge is in E
o k-simplices Kk(G): (k + 1)-cliques {ip,..., ik} of G

For ranking problems, suffices to construct X(G) up to dimension 2!

@ global ranking v : V — R, O-forms, ie. vectors

e pairwise ranking w(i,j) = —w(j, i) for (i,j) € E, 1-forms, ie.
skew-symmetric matrices



Discrete Differential Forms

o k-forms:

CKK(G),R) = {u: Kip1(G) = Ryt 1o = sign(0)uiy._i}
for (ig,...,ix) € Kky1(G), where o € G4 is a permutation on
(0,...,k).

e May put metrics/inner products on CX(X(G),R).

@ The following metric on 1-forms, is useful for the imbalance issue

(wj,wi)p = D Dywiw;
(ij)eE
where

Dj; = |{customers who rate both i and j}|.



Discrete Exterior Derivatives:
coboundary maps

o k-coboundary maps d; : CK(K(G),R) — Ck*1(K(G),R) are defined
as the alternating difference operator

k+1
(5kU)(i0, ceey ik+1) — Z(—l)’_{_lu(iO) ERE ij—l: ij+1; KR ik—{-l)

Jj=0
@ 0, plays the role of differentiation
@ In particular,

> (0ov)(i,)) = vj — vi =: (grad v)(i, )
- (B1w)(iJy k) = () (wj + wi + wig) = (curl w)(i,j, k)
(triangular-trace of skew-symmetric matrix [w;])



Curl (Jit/%) and Divergence (#1/%)
For each triangle {/,/, k}, the curl
(curlw)(i,j, k) = (61w)(i, j, k) = wjj + wji + wy;

measures the total flow-sum along the loop i — j — k — |.

e (61w)(i,J, k) = 0 implies the flow is path-independent, which
defines the triangular transitivity subspace.

For each alternative i € V, the divergence

(div w)(i) := —(64 w)(i) := Z Wiy

measures the inflow-outflow sum at /.

o (6 w)(i) = 0 implies alternative i is preference-neutral in all pairwise
comparisons.

@ divergence-free flow 50T w = 0 is cyclic



Basic Alg. Top.: Boundary of Boundary is Empty

Fundamental tenet of topology: dx+10dx = 0.

For k =0,
CO ﬁ) Cl 5_1> C2
ie. .
Global £2% Pairwise <27, Triplewise
and so - y
Global E2E=M) b vise <ol Triplewise.
We have
curl o grad(Global Rankings) = 0.
This implies

@ global rankings are transitive/consistent,

@ no need to consider rankings beyond triplewise.



High Dim. Combinatorial Laplacians

k-dimensional combinatorial Laplacian, Ay : CK — Ck by
Ay = 0_10;_1 + 630k, k>0
k = 0, graph Laplacian or vertex Laplacian
Ay = 6500
k = 1, vector Laplcian (first term is edge Laplacian)
A1 = dpdy + 0761 = curlo curl® — divograd

Important Properties:

» A, positive semidefinite
> ker(Ag) = ker(d;_,) N ker(dx) harmonic forms
» Hodge decomposition



Hodge Decomposition Theorem

@ Every combinatorial Laplacians A has an associated Hodge
decomposition.

e For k =1, this is the decomposition (of discrete vector fields/skew
symmetric matrices/network flows) that we have been discussing.

Theorem (Hodge decomposition for pairwise ranking)

The space of pairwise rankings, C1(K(G),R), admits an orthogonal
decomposition into three

CHK(G),R) = im(do) ® H1 ® im(57)

where
H;, = ker(d1) Nker(dg5) = ker(Ay).




Hodge Decomposition Theorem

CYCLIC (divergence-free)

ker &)
e — _— ~ [
5 ~ ™~ W S ~ 2 > - ~
/ \\ r"/ \‘\\ / g
' N\ 3 // '-\ / ~ (I.
|/ im 60 \"\\ }// H 1 \ / un 61
Global | @ | Harmonic | © | Inconsistent
/ \ / \
\ ’f ‘y\ . . "I‘I \
\ (consistent acyclic) ) / ‘\\ (consistent cyclic) // \.\
\\ /" .\\ / 5 N\
AN / N / N
~ - ~ _~ > D
Tr—T I e
ker 8 1

CONSISTENT (curl-free)



Harmonic rankings: locally consistent but
globally inconsistent (circular coordinate)

e C——
e —
C— e
—— —
| —— | ema——
R —
e e -
he— e—
-~ w—

Figure: A locally consistent but globally

cyclic harmonic ranking. Figure: A harmonic ranking from

truncated Netflix movie-movie network



Rank Aggregation as Projection

Rank aggregation problem reduced essentially to linear least squares

Corollary

Every pairwise ranking admits a unique orthogonal decomposition,
W= projim(&g) w + projker(é'b") o

Ie.
pairwise = grad(global) + cyclic

Particularly the first projection grad(global) gives a global ranking

x* = (8580) 05w = — (o) div(w) |

O(n3) flops complexity with great algorithms (dense: Givens/Householder
QR, Golub-Reinsch SVD; sparse: CGLS, LSQR; sampling: DMM '06)



Don Saari's Geometric Illustration of
Different Projections

 X(k,i)
(—1;-1)1) _(_Iol-l)

T,

X(j k)

Xi) il (-1,1,-1)

(1-1~1) ' (1,1,~1)

FIGURE 4. The shaded region is the subspace X;; +Xx +Xi; = 0.
The transitive region consists of six orthants whose correspond-
ing vertices belong to {£+1,+,1,+1}—{[1,1,1],[-1,—1,-1]}. The
Borda count or min x ¢ a4, 1(X) is the l>-projection onto the shaded
plane while the Kemeny optimization or minx¢ g, I(X) is the [3-
projection onto the transitive region.



Measuring Inconsistency by Curls

« Define the cyclicity ratio by

C =

P

2
Hproj, . WH
im(curl ) Sl
w

This measures the total inconsistency within the data and model w.

 Relative curl Wi+ Wy + Wy,

c,(i,j.k) = e[0.1]

W +‘ij‘+‘wki

which equals to 1 iff {i,j,k} is a combinatorial intransitive triangle.



Application: 6 Movies with Dynamic Drifts

Average Score

Average Score
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FIGURE 5. Average scores of 6 selected movies over 74 months.
The three movies in the top row has a decreasing trend in monthly
average scores, while in a contrast the other three movies in the
bottom row exhibits an increasing trend.



Model Selection by Cyclicity Ratio

Global ranking (Score)

Movie MRQE Mean Hodge-Difference Hodge-Ratio Hodge-Binary
Shakespeare in Love 1(85) 2(3.87) 1 (0.247) 2 (0.0781) 1 (0.138)
Witness 2 (77) 3 (3.86) 2 (0.217) 1 (0.0883) 3 (0.107)
October Sky 3(76) 1(3.93) 3 (0.213) 3 (0.0775) 2 (0.111)
The Waterboy 4 (66) 6 (3.38) 6 (—0.464) 6 (—0.1624) 6 (—0.252)
Interview with the Vampire 5 (65) 4 (3.71) 4 (~0.031) 4 (-0.0121) 4 (~.012)
Dune 6(44) 5(349) 5 (-0.183) 5 (-0.0693) 5 (—0.092)

Cyeclicity ratio - - 0.77 1.15 0.30

TABLE 1. Global ranking of selected six movies via different meth-
ods: MRQE, mean score over customers, Hodge decomposition
with algorithmic mean score difference, Hodge decomposition with
geometric mean score ratio, and Hodge decomposition with binary
comparisons. It can be seen that the Hodge decomposition with
binary comparisons has the smallest inconsistency in terms of the
cyclicity ratio.

MRQE: Movie-Review-Query-Engine (http://www.mrge.com/)



Just for fun:
Chinese Universities (mainland) Ranking

Rank Research Pagerank HITS HITS Hub
2002 Authority

Pku.edu.cn |1 2 2 1

Tsinghua.ed | 1 1 1 6

u.cn

Fudan.edu. | 3 7 50 21

cn

DATA: 2002, http://cybermetrics.wlv.ac.uk/database/stats/data




Application IT:
Hodge Decomposition of Games

« Every strategy profile is a node in a graph
« Two strategy profile is comparable iff only 1 player’s strategy changed
« The edge flow is that player’s utility difference

2
(c,c) > (c,d)
(3,3) (0,5) 2 1
(5,0) (1,1)
\ 4 N\
Note: Prisoner’s dilemma is a potential (d C) 1 . (dld)

game to its Nash equilibrium, not efficient!
So we want new way for flow construction...
Candogan-Menache-Ozdaglar-Parrilo, 2010, Flows and

Decompositions of Games: Harmonic and Potential Games, arXiv:
1004.2405v1, May 13, 2010.



Hodge Decomposition of
Finite Games

* The flows defined above preserve Nash
equilibrium
* Every player’s utility can be normalized

to mean zero, without changing the flow
and thus Nash Equilibrium

* The residue of mean-zero utility from
the original utility is called non-strategic
games



Hodge Decomposition of
Finite Games

Non-strategic Games

Potential Games

Harmonic Games (zero-sum)




Potential Games

@ We consider finite games in strategic form,
G = (M AE™}mem, {U™ }mem)-
@ G is an exact potential game if 3® : E — R such that

@ Weaker notion: ordinal potential game, if the utility differences above
agree only in sign.

e Potential ® aggregates and explains incentives of all players.

@ Examples: congestion games, etc.



Potential Games

@ A global maximum of an ordinal potential is a pure Nash equilibrium.
@ Every finite potential game has a pure equilibrium.

@ Many learning dynamics (such as better-reply dynamics, fictitious
play, spatial adaptive play) “converge” to a pure Nash equilibrium

[Monderer and Shapley 96], [Young 98], [Marden, Arslan, Shamma
06, 07].



Monderer-Shapley Condition

A path is a collection of strategy profiles v = (xp, ..., xn) such that x; and
xi+1 differ in the strategy of exactly one player where x; € E for
i€{0,1,...N}. For any path ~, let

N
I(y) =D u™(x) — u™(xi-1),
i=1

where m; denotes the player changing its strategy in the ith step of the
path.

Theorem ([Monderer and Shapley 96])

A game G is an exact potential game if and only if for all simple closed

paths, v, () = 0. Moreover, it is sufficient to check closed paths of
length 4.



Harmonic Games as
Orthogoal Complement of
Potential Games

Very different properties than potential games.
Agreement between players is never a posibility!
@ Simple examples: rock-paper-scissors, cyclic games, etc.
@ Essentially, sums of cycles.
@ Generically, never have pure Nash equilibria.
@ Uniformly mixed profile (for all players) is mixed Nash.

Other interesting static and dynamic properties (e.g., correlated equilibria,
best-response dynamics, etc.)



Bimatrix Games

For two-player games, simple explicit formulas.
Assume the game is given by matrices (A, B), and (for simplicity), the
non-strategic component is zero (i.e., 17 A =0, B1 = 0). Define

1 1 1
— —(A+B)., D:==-(A-B). I:=—(A11T —117B).
S 2( + B), 2( ) 2n( )
@ Potential component:
(S+T, S-T)

@ Harmonic component:
(D-T, —D+T)

Notice that the harmonic component is zero sum.
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