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Introduction

General method of manifold learning takes the following
Spectral Kernal Embedding approach
• construct a neighborhood graph of data, G
• construct a positive semi-definite kernel on graphs, K
• find global embedding coordinates of data by
eigen-decomposition of K = YY T

Graph G may or may not reflect natural metric (e.g. similarity
in genomics)

Sometimes global embedding coordinates are not a good way
to organize/visualize the data (e.g. d > 3)

Sometimes all that is required is a qualitative view
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Properties of Data Geometry

Properties of Data Geometry

Fact

We Don’t Trust Large Distances!

In life or social sciences, distance (metric) are constructed
using a notion of similarity (proximity), but have no
theoretical backing (e.g. distance between faces, gene
expression profiles, Jukes-Cantor distance between sequences)

Small distances still represent similarity (proximity), but long
distance comparisons hardly make sense
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Properties of Data Geometry

Properties of Data Geometry

Fact

We Only Trust Small Distances a Bit!

Both pairs are regarded as similar, but the strength of the
similarity as encoded by the distance may not be so significant

Similar objects lie in neighborhood of each other, which
suffices to define topology
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Properties of Data Geometry

Properties of Data Geometry

Fact

Even Local Connections are Noisy, depending on observer’s scale!

Is it a circle, dots, or circle of circles?

To see the circle, we ignore variations in small distance
(tolerance for proximity)
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Properties of Data Geometry

So we need Topology here

Distance measurements are noisy

Physical device like human eyes may ignore differences in
proximity (or as an average effect)

Topology is the crudest way to capture invariants under
distortions of distances

At the presence of noise, one need topology varied with scales
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What Kind of Topological Methods?

Topology

Figure: Homeomorphic
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What Kind of Topological Methods?

Topology

Figure: Homeomorphic
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What Kind of Topological Methods?

Topology

The see that these pairs are same requires distortion of
distances, i.e. stretching and shrinking

We do not permit tearing, i.e. distorting distances in a
discontinuous way

How to make this precise, especially in discrete and noisy
setting?
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What Kind of Topological Methods?

Topology

We would like to say that all points within tolerance are the
same

Moreover, all non-zero distances beyond tolerance are the
same, i.e. invariant under distortion

Origins of Topology in Math• Leonhard Euler 1736, Seven Bridges of Königsberg
• Johann Benedict Listing 1847, Vorstudien zur Topologie
• J.B. Listing (orbituary) Nature 27:316-317, 1883. “qualitative geometry from the ordinary geometry in
which quantitative relations chiefly are treated.”
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What Kind of Topological Methods?

What kind of topology?

Topology studies (global) mappings between spaces

Point-set topology: continuous mappings on open sets

Differential topology: differentiable mappings on smooth
manifolds
• Morse theory tells us topology of continuous space can be
learned by discrete information on critical points

Algebraic topology: homomorphisms on algebraic structures,
the most concise encoder for topology

Combinatorial topology: mappings on simplicial (cell)
complexes
• simplicial complex may be constructed from data
• Algebraic, differential structures can be defined here

Yuan Yao Fudan Summer School 2011
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What Kind of Topological Methods?

Topological Data Analysis

What kind of topological information often useful
• 0-homology: clustering or connected components
• 1-homology: coverage of sensor networks; paths in robotic
planning
• 1-homology as obstructions: inconsistency in statistical
ranking; harmonic flow games
• high-order homology: high-order connectivity?

How to compute homology in a stable way?
• simplicial complexes for data representation
• filtration on simplicial complexes
• persistent homology
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What Kind of Topological Methods?

Betti Numbers
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What Kind of Topological Methods?

Betti Numbers
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What Kind of Topological Methods?

Betti Numbers
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Simplicial Complex

Simplicial Complexes for Data Representation

Definition (Simplicial Complex)

An abstract simplicial complex is a collection Σ of subsets of V
which is closed under inclusion (or deletion), i.e. τ ∈ Σ and σ ⊆ τ ,
then σ ∈ Σ.

Chess-board Complex

Point cloud data:
• Nerve complex
• Cech, Rips, Witness complex
• Mayer-Vietoris Blowup

Term-document cooccurance complex

Clique complex in pairwise comparison graphs

Strategic complex in flow games

Yuan Yao Fudan Summer School 2011
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Simplicial Complex

Chess-board Complex

Definition (Chess-board Complex)

Let V be the positions on a Chess board. Σ collects position
subsets of V where one can place queens (rooks) without
capturing each other.

Closedness under deletion: if σ ∈ Σ is a set of “safe”
positions, then any subset τ ⊆ σ is also a set of “safe”
positions

Yuan Yao Fudan Summer School 2011
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Simplicial Complex

Nerve complex

Definition (Nerve Complex)

Define a cover of X , X = ∪αUα. V = {Uα} and define
Σ = {UI : ∩α∈IUI 6= ∅}.

Closedness under deletion

Can be applied to any topological space X

In a metric space (X , d), if
Uα = Bε(tα) := {x ∈ X : d(x − tα) ≤ ε}, we have Čech
complex Cε.

Nerve Theorem: if every UI is contractible, then X has the
same homotopy type as Σ.
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Simplicial Complex

Example: Nerve/Čech Complex

Figure: Čech complex of a circle, Cε, covered by a set of balls.

Yuan Yao Fudan Summer School 2011
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Simplicial Complex

Vietoris-Rips complex

Čech complex is hard to compute, even in Euclidean space

One can easily compute an upper bound for Čech complex
• Construct a Čech subcomplex of 1-dimension, i.e. a graph
with edges connecting point pairs whose distance is no more
than ε.
• Find the clique complex, i.e. maximal complex whose
1-skeleton is the graph above, where every k-clique is
regarded as a k − 1 simplex

Definition (Vietoris-Rips Complex)

Let V = {xα ∈ X}. Define
VRε = {UI ⊆ V : d(xα, xβ) ≤ ε, α, β ∈ I}.

Yuan Yao Fudan Summer School 2011
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Simplicial Complex

Example: Rips Complex

Figure: Left: Čech complex gives a circle; Right: Rips complex gives a
sphere S2.
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Simplicial Complex

Generalized Vietoris-Rips for Symmetric Relations

Definition (Symmetric Relation Complex)

Let V be a set and a symmetric relation R = {(u, v)} ⊆ V 2 such
that (u, v) ∈ R ⇒ (v , u) ∈ R. Σ collects subsets of V which are in
pairwise relations.

Closedness under deletion: if σ ∈ Σ is a set of related items,
then any subset τ ⊆ σ is a set of related items

Generalized Vietoris-Rips complex beyond metric spaces

E.g. Zeeman’s tolerance space

C.H. Dowker defines simplicial complex for unsymmetric
relations

Yuan Yao Fudan Summer School 2011
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Simplicial Complex

Sandwich Theorems

Rips is easier to compute than Cech
• even so, Rips is exponential to dimension generally

However Vietoris-Rips CAN NOT preserve the homotopy type
as Cech

But there is still a hope to find a lower bound on homology –

Theorem (“Sandwich”)

VRε ⊆ Cε ⊆ VR2ε

If a homology group “persists” through Rε → R2ε, then it
must exists in Cε; but not the vice versa.

Yuan Yao Fudan Summer School 2011
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Simplicial Complex

A further simplification: Witness complex

Definition (Strong Witness Complex)

Let V = {tα ∈ X}. Define
W s
ε = {UI ⊆ V : ∃x ∈ X , ∀α ∈ I , d(x , tα) ≤ d(x ,V ) + ε}.

Definition (Week Witness Complex)

Let V = {tα ∈ X}. Define
W w
ε = {UI ⊆ V : ∃x ∈ X ,∀α ∈ I , d(x , tα) ≤ d(x ,V−I ) + ε}.

V can be a set of landmarks, much smaller than X

Monotonicity: W ∗
ε ⊆W ∗

ε′ if ε ≤ ε′
But not easy to control homotopy types between W ∗ and X

Yuan Yao Fudan Summer School 2011
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Simplicial Complex

Term-Document Co-occurrence Complex

FIG. 3. (i) A simplicial family. (ii) Not a simplicial family.

FIG. 4. The simplexes generated by the rows of the matrix (8).

Example 3. Consider the following matrix

c1 c2 c3 c4 c5

r1 1 0 0 0 0
r2 1 1 1 0 0
r3 0 0 1 1 0
r4 0 0 1 1 0
r5 0 0 0 0 1
r6 0 0 0 0 1

(8)

with six rows r1, r2, . . . , r6 and five columns c1, c2, . . . , c5.
For row r1, the column c1 contains a “1” and the other
columns contain “0.” We associate with r1 a 0-simplex
σ0

(r1)
= (c1). In a similar way, we obtain the following

simplexes for the remaining rows:

σ2
(r2)

= (c1, c2, c3),

σ1
(r3)

= (c3, c4),

σ1
(r4)

= (c3, c4),

σ0
(r5)

= (c5),

σ0
(r6)

= (c5).

(9)

We draw the six simplexes in Figure 4, from which we
see clearly that they do form a simplicial family. However,

the simplexes σ0
(r5)

and σ0
(r6)

are “disconnected” from other
four members. The following definition is used to model this
kind of topological property. We have modified the original
definition of “connectiveness” in Q-analysis to cater for our
present application.

Definition 3. Let " be a simplicial family and d is the highest
dimension of the simplexes in ". Let 0 ≤ q ≤ d be an integer.
We call two simplexes σa and σb in " q-near if they have a
common q-face. We call σa and σb q-connected if there exists
a sequence

σ1, σ2, . . . , σj (10)

of distinct simplexes of ", such that σ1 = σa, σj = σb, and σi

is qi-near to σi+1 for all 1 ≤ i ≤ j − 1, 0 ≤ qi ≤ d an integer,
and q = min{qi}. We call Sequence 10 a q-chain Cab from
σa to σb and the number (j − 1) the length of Cab, denoted
by l(Cab). For all possible q-chains connecting σa to σb with
the same length L, we call the chain with the maximum value
of q = q* the maximal L-chain, denoted by C∗

ab(L). We say
that σa and σb are q*-connected if they are connected by a
maximal chain.

Note that if two simplexes are q-near, then they must be
connected and the length is equal to 1. If there is no chain
connecting two simplexes, then we set the length between
them to ∞. If two simplexes are q-connected, then they also
are (q − 1)-connected for (q − 1) ≥ 0.

Example 4. Referring to Figure 4 of Example 3, the sim-
plexes σ0

(r1)
and σ2

(r2)
are 0-near, σ1

(r3)
and σ1

(r4)
are 1-near, and

σ0
(r5)

and σ0
(r6)

are 0-near. Furthermore, σ0
(r1)

is 0-connected
to σ1

(r3)
and σ1

(r4)
via, respectively, the maximal 2-chains

σ0
(r1)

, σ2
(r2)

, σ1
(r3)

and σ0
(r1)

, σ2
(r2)

, σ1
(r4)

(i.e., q* = 0). However,
σ0

(r5)
and σ0

(r6)
are not connected to any of the other four

simplexes.
A further structure can be defined on a simplicial family,

as follows.

Definition 4. The relation “is q-connected to” on a simplicial
family ", denoted by rq, is an equivalence relation. Let "q

be the set of simplexes in " with dimension greater than
or equal to q, where q = 0, 1, . . . , dim". Then, rq partitions
"q into equivalence classes of q-connected simplexes. These
equivalence classes are called the q-connected components
of ". Let Qq denote the number of q-connected components
in ". The determination of the components and Qq for each
value of q is termed a Q-analysis of ".

Example 5. The result of Q-analysis for the simplicial family
in Example 3 is given in Table 2. Since the highest dimen-
sion of the simplexes is 2, the Q-analysis of the simplicial
family has three levels corresponding to q = 0,1 and 2. The
level q = 2 consists of those simplexes with dimension greater
than or equal to 2; hence, this level contains one simplex
σ2

(r2)
. Next, at the level q = 1, two more simplexes σ1

(r3)
and

σ1
(r4)

come in, which are 1-connected by a chain of length 1
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Left is a term-document co-occurrence matrix

Right is a simplicial complex representation of terms

Connectivity analysis captures more information than Latent
Semantic Index (Li & Kwong 2009)
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Simplicial Complex

Strategic Simplicial Complex for Flow Games

O F

O 3, 2 0, 0

F 0, 0 2, 3

(a) Battle of the sexes

O F

O 4, 2 0, 0

F 1, 0 2, 3

(b) Modified battle of
the sexes

It is easy to see that these two games have the same pairwise comparisons, which will lead to
identical equilibria for the two games: (O, O) and (F, F ). It is only the actual equilibrium payoffs
that would differ. In particular, in the equilibrium (O, O), the payoff of the row player is increased
by 1.

The usual solution concepts in games (e.g., Nash, mixed Nash, correlated equilibria) are defined
in terms of pairwise comparisons only. Games with identical pairwise comparisons share the same
equilibrium sets. Thus, we refer to games with identical pairwise comparisons as strategically
equivalent games.

By employing the notion of pairwise comparisons, we can concisely represent any strategic-form
game in terms of a flow in a graph. We recall this notion next. Let G = (N, L) be an undirected
graph, with set of nodes N and set of links L. An edge flow (or just flow) on this graph is a function
Y : N × N → R such that Y (p,q) = −Y (q,p) and Y (p,q) = 0 for (p,q) /∈ L [21, 2]. Note that
the flow conservation equations are not enforced under this general definition.

Given a game G, we define a graph where each node corresponds to a strategy profile, and
each edge connects two comparable strategy profiles. This undirected graph is referred to as the
game graph and is denoted by G(G) � (E, A), where E and A are the strategy profiles and pairs
of comparable strategy profiles defined above, respectively. Notice that, by definition, the graph
G(G) has the structure of a direct product of M cliques (one per player), with clique m having
hm vertices. The pairwise comparison function X : E × E → R defines a flow on G(G), as it
satisfies X(p,q) = −X(q,p) and X(p,q) = 0 for (p,q) /∈ A. This flow may thus serve as an
equivalent representation of any game (up to a “non-strategic” component). It follows directly
from the statements above that two games are strategically equivalent if and only if they have the
same flow representation and game graph.

Two examples of game graph representations are given below.

Example 2.2. Consider again the “battle of the sexes” game from Example 2.1. The game graph
has four vertices, corresponding to the direct product of two 2-cliques, and is presented in Figure 2.

(O, O) (O, F )

(F, O) (F, F )

3 2

2

3

Figure 2: Flows on the game graph corresponding to “battle of the sexes” (Example 2.2).

Example 2.3. Consider a three-player game, where each player can choose between two strategies
{a, b}. We represent the strategic interactions among the players by the directed graph in Figure
3a, where the payoff of player i is −1 if its strategy is identical to the strategy of its successor
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7

Strategic simplicial complex is the clique complex of pairwise
comparison graph above, inspired by ranking

Every game can be decomposed as the direct sum of potential
games and zero-sum games (harmonic games) (Candogan,
Menache, Ozdaglar and Parrilo 2010)
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Betti Number at Different Scales

Example I: Persistent Homology of Čech Complexes

Figure: Scale ε1: β0 = 1, β1 = 3
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Betti Number at Different Scales

Example I: Persistent Homology of Čech Complexes

Figure: Scale ε1: β0 = 1, β1 = 2
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Betti Number at Different Scales

Example II: Persistence 0-Homology induced by Height
Function

Figure: The birth and death of connected components.
Yuan Yao Fudan Summer School 2011
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Betti Number at Different Scales

Example III: Persistent Homology as Online Algorithm to
Track Topology Changements

Figure: The birth and death of simplices.Yuan Yao Fudan Summer School 2011
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Betti Number at Different Scales

Persistent Betti Numbers: Barcodes

Toolbox: JPlex (http://comptop.stanford.edu/)
• Java version of Plex, work with matlab
• Rips, Witness complex, Persistence Homology

Other Choices: Plex 2.5 for Matlab (not maintained any
more), Dionysus (Dimitry Morozov)

Yuan Yao Fudan Summer School 2011
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Algebraic Theory

Persistent Homology: Algebraic Theory
[Zormorodian-Carlsson]

All above gives rise to a filtration of simplicial complex

∅ = Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ . . .

Functoriality of inclusion: there are homomorphisms between
homology groups

0→ H1 → H2 → . . .

A persistent homology is the image of Hi in Hj with j > i .

Yuan Yao Fudan Summer School 2011
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Algebraic Theory

Persistent 0-Homology of Rips Complex

Equivalent to single-linkage clustering

Barcode is the single linkage dendrogram (tree) without labels

Kleinberg’s Impossibility Theorem for clustering: no clustering
algorithm satisfies scale invariance, richness, and consistency

Memoli & Carlsson 2009: single-linkage is the unique
persistent clustering with scale invariance

Open: but, is persistence the necessity for clustering?

Notes: try matlab command linkage for single-linkage
clustering.

Yuan Yao Fudan Summer School 2011
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Coverage

Application I: Sensor Network Coverage by Persistent
Homology

V. de Silva and R. Ghrist (2005) Coverage in sensor networks
via persistent homology.

Ideally sensor communication can be modeled by Rips complex
• two sensors has distance within a short range, then two
sensors receive strong signals;
• two sensors has distance within a middle range, then two
sensors receive weak signals;
• otherwise no signals
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Coverage

Sandwich Theorem

Theorem (de Silva-Ghrist 2005)

Let X be a set of points in Rd and Cε(X ) the Čech complex of the
cover of X by balls of radius ε/2. Then there is chain of inclusions

Rε′(X ) ⊂ Cε(X ) ⊂ Rε(X ) whenever
ε

ε′
≥

√
2d

d + 1
.

Moreover, this ratio is the smallest for which the inclusions hold in
general.

Note: this gives a sufficient condition to detect holes in sensor
network coverage

Čech complex is hard to compute while Rips is easy;

If a hole persists from Rε′ to Rε, then it must exists in Cε.
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Coverage

Persistent 1-Homology in Rips Complexes

Figure: Left: Rε′ ; Right: Rε. The middle hole persists from Rε′ to Rε.
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Image

Application II: Natural Image Statistics

G. Carlsson, V. de Silva, T. Ishkanov, A. Zomorodian (2008)
On the local behavior of spaces of natural images,
International Journal of Computer Vision, 76(1):1-12.

An image taken by black and white digital camera can be
viewed as a vector, with one coordinate for each pixel

Each pixel has a “gray scale” value, can be thought of as a
real number (in reality, takes one of 255 values)

Typical camera uses tens of thousands of pixels, so images lie
in a very high dimensional space, call it pixel space, P
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Image

Natural Image Statistics

D. Mumford: What can be said about the set of images
I ⊆ P one obtains when one takes many images with a digital
camera?

Lee, Mumford, Pedersen: Useful to study local structure of
images statistically
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Image

Natural Image Statistics

Figure: 3× 3 patches in images
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Image

Natural Image Statistics

Lee-Mumford-Pedersen [LMP] study only high contrast patches.

Collect: 4.5M high contrast patches from a collection of
images obtained by van Hateren and van der Schaaf

Normalize mean intensity by subtracting mean from each pixel
value to obtain patches with mean intensity = 0

Puts data on an 8-D hyperplane, ≈ R8

Furthermore, normalize contrast by dividing by the norm, so
obtain patches with norm = 1, whence data lies on a 7-D
ellipsoid, ≈ S7
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Image

Natural Image Statistics: Primary Circle

High density subsets M(k = 300, t = 0.25):

Codensity filter: dk(x) be the distance from x to its k-th
nearest neighbor
• the lower dk(x), the higher density of x
Take k = 300, the extract 5, 000 top t = 25% densest points,
which concentrate on a primary circle
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Image

Natural Image Statistics: Three Circles

Take k = 15, the extract 5, 000 top 25% densest points,
which shows persistent β1 = 5, 3-circle model
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Image

Natural Image Statistics: Three Circles

Generators for 3 circles
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Image

Natural Image Statistics: Klein Bottle
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Image

Natural Image Statistics: Klein Bottle Model
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Molecular Dynamics

Application III: Persistent Homology and Discrete Morse
Theory

Persistent homology gives a pairing (birth-death) between a
simplex and its co-dimensional one faces

It leads to a particular implementation of Robin Forman’s
combinatorial gradient field

Thus Persistent homology is equivalent to discrete Morse
Theory by Robin Forman
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Molecular Dynamics

Morse Theory and Reeb graph

a nice (Morse) function: h : X → R, on a smooth manifold X
topology of X reconstructed from level sets h−1(t)

topological of h−1(t) only changes at ‘critical values’

Reeb graph: a simplified version, contracting into points the
connected components in h−1(t)

h

Figure: Construction of Reeb graph; h maps each point on torus to its
height.
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Molecular Dynamics

In applications.

Reeb graph has found various applications in computational
geometry, statistics under different names.

computer science: contour trees, reeb graphs

statistics: density cluster trees (Hartigan)
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Molecular Dynamics

Mapper: an extension for topological data analysis

[Singh-Memoli-Carlsson. Eurograph-PBG, 2007] Given a data set X ,

choose a filter map h : X → T , where T is a topological
space such as R, S1, Rd , etc.

choose a cover T ⊆ ∪αUα

cluster/partite level sets h−1(Uα) into Vα,β

graph representation: a node for each Vα,β, an edge between
(Vα1,β1 ,Vα2,β2) iff Uα1 ∩ Uα2 6= ∅ and Vα1,β1 ∩ Vα2,β2 6= ∅.
extendable to simplicial complex representation.

Note: it extends Morse theory from R to general topological space
T ; may lead to a particular implementation of Nerve theorem
through filter map h.
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Molecular Dynamics

An example with real valued filter

a5

a1

b1
a2

a3

b3
a4

b4
b5

b2h

Figure: An illustration of Mapper.

Note:
degree-one nodes contain local minima/maxima;

degree-three nodes contain saddle points (critical points);

degree-two nodes consist of regular points
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Molecular Dynamics

Example: RNA Tetraloop

Figure: RNA
GCAA-Tetraloop

Biological relevance:
serve as nucleation site for RNA folding

form sequence specific tertiary
interactions

protein recognition sites

certain Tetraloops can pause RNA
transcription

Note: simple, but, biological debates over
intermediate states on folding pathways
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Molecular Dynamics

Debates: Two-state vs. Multi-state Models

(a) 2-state model

(b) multi-state model

2-state: transition state with any one
stem base pair, from thermodynamic
experiments [Ansari A, et al. PNAS, 2001, 98: 7771-7776]

multi-state: there is a stable intermediate
state, which contains collapsed structures,
from kinetic measurements [Ma H, et al. PNAS,

2007, 104:712-6]

experiments: no structural information

computer simulations at full-atom
resolution:
• exisitence of intermediate states
• if yes, what’s the structure?
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Molecular Dynamics

Mapper with density filters in biomolecular folding

Reference: Bowman-Huang-Yao et al. J. Am. Chem. Soc. 2008;
Yao, Sun, Huang, et al. J. Chem. Phys. 2009.

densest regions (energy basins) may correspond to metastates
(e.g. folded, extended)

intermediate/transition states on pathways connecting them
are relatively sparse

Therefore with Mapper

clustering on density level sets helps separate and identify
metastates and intermediate/transition states

graph representation reflects kinetic connectivity between
states
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Molecular Dynamics

A vanilla version

K =




exp(−d11) exp(−d12)
exp(−d21) exp(−d22)

. . .

exp(−dnn)




row sum clustering graph

Figure: Mapper Flow Chart

1 Kernel density estimation h(x) =
∑

i K (x , xi ) with Hamming
distance for contact maps

2 Rank the data by h and divide the data into n overlapped sets

3 Single-linkage clustering on each level sets

4 Graphical representation
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Molecular Dynamics

Mapper output for Unfolding Pathways
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Figure: Unfolding pathway
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Molecular Dynamics

Mapper output for Refolding Pathways
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Figure: Refolding pathway
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Progression Analysis of Disease

Application IV: Progression Analysis for Breast Cancer

Nicolau, Levine, Carlsson, PNAS, 2010

Deviation functions from normal tissues are used as filters
(Morse-type functions)

Mapper (Reeb Graph) with such filters leads to Progression
Analysis of Disease
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Progression Analysis of Disease

PAD analysis of the NKI data
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Progression Analysis of Disease
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