Outline	Simplicial Com

Mathematics of Data III: An Introduction to Topological Data Analysis

Yuan Yao

School of Mathematical Sciences Peking University

July 13, 2011

< ∃ →

- 1 Why Topological Methods?
 - Properties of Data Geometry
 - What Kind of Topological Methods?
- 2 Simplicial Complex for Data Representation
 - Simplicial Complex
- 3 Persistent Homology
 - Betti Number at Different Scales
 - Algebraic Theory
- **4** Some Applications
 - Coverage
 - Image
 - Molecular Dynamics
 - Progression Analysis of Disease

Introduction

- General method of manifold learning takes the following Spectral Kernal Embedding approach
 - construct a neighborhood graph of data, G
 - construct a positive semi-definite kernel on graphs, K
 - find global embedding coordinates of data by eigen-decomposition of $K = YY^T$
- Graph G may or may not reflect natural metric (e.g. similarity in genomics)
- Sometimes global embedding coordinates are not a good way to organize/visualize the data (e.g. d > 3)
- Sometimes all that is required is a qualitative view

Why Simplicial Comple •••••• Persistent Homology 0000000 Some Applications

Properties of Data Geometry

Properties of Data Geometry

Fact

We Don't Trust Large Distances!

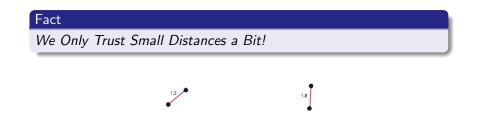
- In life or social sciences, distance (metric) are constructed using a notion of similarity (proximity), but have no theoretical backing (e.g. distance between faces, gene expression profiles, Jukes-Cantor distance between sequences)
- Small distances still represent similarity (proximity), but long distance comparisons hardly make sense

Outline Why Simplicial Complex

Persistent Homology 0000000 Some Applications

Properties of Data Geometry

Properties of Data Geometry



- Both pairs are regarded as similar, but the strength of the similarity as encoded by the distance may not be so significant
- Similar objects lie in neighborhood of each other, which suffices to define topology

Why Simplicial Comple

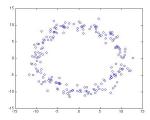
Persistent Homology 0000000 Some Applications

Properties of Data Geometry

Properties of Data Geometry

Fact

Even Local Connections are Noisy, depending on observer's scale!



- Is it a circle, dots, or circle of circles?
- To see the circle, we ignore variations in small distance (tolerance for proximity)

Some Applications

Properties of Data Geometry

So we need Topology here

- Distance measurements are noisy
- Physical device like human eyes may ignore differences in proximity (or as an average effect)
- Topology is the crudest way to capture invariants under distortions of distances
- At the presence of noise, one need topology varied with scales

Why Simplicial Comple

Persistent Homology 0000000 Some Applications

What Kind of Topological Methods?

Topology

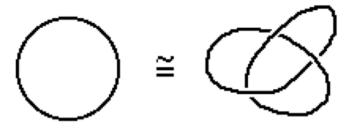


Figure: Homeomorphic

・ロッ ・ 一 ・ ・ ・ ・

Outline	Why	Simplicial Complex
	000000000	000000000000000000000000000000000000000

Some Applications

э

What Kind of Topological Methods?

Topology

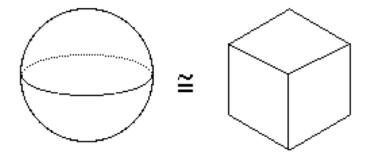


Figure: Homeomorphic

<ロ> <同> <同> < 同> < 同>

Outline	Why	Simplicial Complex	Persistent Homology	Some Applications
	0000000	00000000000000000000000000000000000000		000000000000000000000000000000000000000
What Kind of	Topological Methods	s?		
Topol	ogy			

- The see that these pairs are same requires distortion of distances, i.e. stretching and shrinking
- We do not permit *tearing*, i.e. distorting distances in a discontinuous way
- How to make this precise, especially in discrete and noisy setting?

Outline	Why	Simplicial Complex	Persistent Homology	Some Applications
	0000000	00000 0000000000		000000000000000000000000000000000000000
What Kind of T	opological Method	s?		
Topolo	ogy			

- We would like to say that all points within tolerance are the same
- Moreover, all non-zero distances beyond tolerance are the same, i.e. invariant under distortion

Origins of Topology in Math

- Leonhard Euler 1736, Seven Bridges of Königsberg
- Johann Benedict Listing 1847, Vorstudien zur Topologie

 \bullet J.B. Listing (orbituary) Nature 27:316-317, 1883. "qualitative geometry from the ordinary geometry in which quantitative relations chiefly are treated."

Why Simplicial Complex

Persistent Homology

Some Applications

What Kind of Topological Methods?

What kind of topology?

- Topology studies (global) mappings between spaces
- Point-set topology: continuous mappings on open sets
- Differential topology: differentiable mappings on smooth manifolds
 - Morse theory tells us topology of continuous space can be learned by discrete information on critical points
- Algebraic topology: homomorphisms on algebraic structures, the most concise encoder for topology
- Combinatorial topology: mappings on simplicial (cell) complexes
 - simplicial complex may be constructed from data
 - Algebraic, differential structures can be defined here

Why Simplicial Comple

Persistent Homology

Some Applications

What Kind of Topological Methods?

Topological Data Analysis

- What kind of topological information often useful
 - 0-homology: clustering or connected components
 - 1-homology: coverage of sensor networks; paths in robotic planning
 - 1-homology as obstructions: inconsistency in statistical ranking; harmonic flow games
 - high-order homology: high-order connectivity?
- How to compute homology in a stable way?
 - simplicial complexes for data representation
 - filtration on simplicial complexes
 - persistent homology

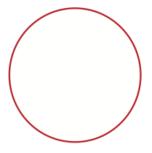
Outline	Why	Simplicial Complex
	00000000	000000000000000000000000000000000000000

Some Applications

э

What Kind of Topological Methods?

Betti Numbers



 $\beta_0 = 1$, $\beta_1 = 1$, and $\beta_i = 0$ for $i \ge 2$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline	Why	Simplicial Complex
	000000000	000000000000000000000000000000000000000

Some Applications

э

What Kind of Topological Methods?

Betti Numbers

$\beta_0 = 1$, $\beta_1 = 0$, $\beta_2 = 0$, and $\beta_k = 0$ for $k \ge 3$

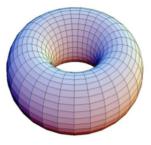
イロン イロン イヨン イヨン

Outline	Why	Simplicial Complex
	00000000	0000 00000000000000000000000000000000

Some Applications

What Kind of Topological Methods?

Betti Numbers



 $\beta_0 = 1$, $\beta_1 = 2$, $\beta_2 = 1$, and $\beta_k = 0$ for $k \ge 3$

・ロン ・部 と ・ ヨ と ・ ヨ と …

э

Why Simplicial Complex

Persistent Homology 0000000 Some Applications

Simplicial Complex

Simplicial Complexes for Data Representation

Definition (Simplicial Complex)

An abstract simplicial complex is a collection Σ of subsets of V which is closed under inclusion (or deletion), i.e. $\tau \in \Sigma$ and $\sigma \subseteq \tau$, then $\sigma \in \Sigma$.

- Chess-board Complex
- Point cloud data:
 - Nerve complex
 - Cech, Rips, Witness complex
 - Mayer-Vietoris Blowup
- Term-document cooccurance complex
- Clique complex in pairwise comparison graphs
- Strategic complex in flow games

Some Applications

Simplicial Complex

Chess-board Complex

Definition (Chess-board Complex)

Let V be the positions on a Chess board. Σ collects position subsets of V where one can place queens (rooks) without capturing each other.

■ Closedness under deletion: if σ ∈ Σ is a set of "safe" positions, then any subset τ ⊆ σ is also a set of "safe" positions

Eight Queens problem

Simplicial Complex

Nerve complex

Definition (Nerve Complex)

Define a cover of X,
$$X = \bigcup_{\alpha} U_{\alpha}$$
. $V = \{U_{\alpha}\}$ and define $\Sigma = \{U_I : \bigcap_{\alpha \in I} U_I \neq \emptyset\}.$

- Closedness under deletion
- Can be applied to any topological space X
- In a metric space (X, d), if $U_{\alpha} = B_{\epsilon}(t_{\alpha}) := \{x \in X : d(x - t_{\alpha}) \le \epsilon\}$, we have Čech complex C_{ϵ} .
- Nerve Theorem: if every U_l is contractible, then X has the same homotopy type as Σ.

Image: A image: A

Why Simplicial Complex

Persistent Homology

Some Applications

Simplicial Complex

Example: Nerve/Čech Complex

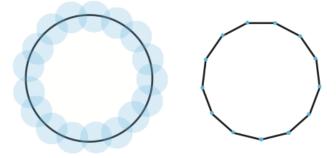


Figure: Čech complex of a circle, C_{ϵ} , covered by a set of balls.

Why Simplicial Complex

Persistent Homology

Some Applications

Simplicial Complex

Vietoris-Rips complex

- Čech complex is hard to compute, even in Euclidean space
- One can easily compute an upper bound for Čech complex
 - Construct a Čech subcomplex of 1-dimension, i.e. a graph with edges connecting point pairs whose distance is no more than $\epsilon.$
 - Find the clique complex, i.e. maximal complex whose 1-skeleton is the graph above, where every k-clique is regarded as a k 1 simplex

Definition (Vietoris-Rips Complex)

Let $V = \{x_{\alpha} \in X\}$. Define $VR_{\epsilon} = \{U_{I} \subseteq V : d(x_{\alpha}, x_{\beta}) \leq \epsilon, \alpha, \beta \in I\}.$

- ∢ ≣ ▶

Why Simplicial Complex

Persistent Homology

Some Applications

Simplicial Complex

Example: Rips Complex

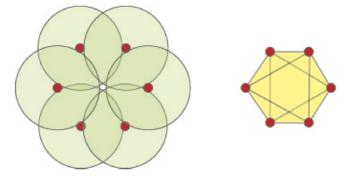


Figure: Left: Čech complex gives a circle; Right: Rips complex gives a sphere S^2 .

Image: A image: A

Persistent Homology 0000000 Some Applications

Simplicial Complex

Generalized Vietoris-Rips for Symmetric Relations

Definition (Symmetric Relation Complex)

Let V be a set and a symmetric relation $R = \{(u, v)\} \subseteq V^2$ such that $(u, v) \in R \Rightarrow (v, u) \in R$. Σ collects subsets of V which are in pairwise relations.

- Closedness under deletion: if $\sigma \in \Sigma$ is a set of related items, then any subset $\tau \subseteq \sigma$ is a set of related items
- Generalized Vietoris-Rips complex beyond metric spaces
- E.g. Zeeman's tolerance space
- C.H. Dowker defines simplicial complex for unsymmetric relations

- 4 同 ト 4 ヨ ト 4 ヨ ト

Outline		Simplicial Complex	Persistent Homology	Some Applications
		000000000000000000000000000000000000000		
Simplicial Complex				
Sandwicl	h The	orems		

- Rips is easier to compute than Cech
 - even so, Rips is exponential to dimension generally
- However Vietoris-Rips CAN NOT preserve the homotopy type as Cech
- But there is still a hope to find a lower bound on homology -

Theorem ("Sandwich")

$$VR_{\epsilon} \subseteq C_{\epsilon} \subseteq VR_{2\epsilon}$$

• If a homology group "persists" through $R_{\epsilon} \rightarrow R_{2\epsilon}$, then it must exists in C_{ϵ} ; but not the vice versa.

Why Simplicial Complex

Persistent Homology

Some Applications

Simplicial Complex

A further simplification: Witness complex

Definition (Strong Witness Complex)

Let $V = \{t_{\alpha} \in X\}$. Define $W_{\epsilon}^{s} = \{U_{I} \subseteq V : \exists x \in X, \forall \alpha \in I, d(x, t_{\alpha}) \leq d(x, V) + \epsilon\}.$

Definition (Week Witness Complex)

Let $V = \{t_{\alpha} \in X\}$. Define $W_{\epsilon}^{w} = \{U_{I} \subseteq V : \exists x \in X, \forall \alpha \in I, d(x, t_{\alpha}) \leq d(x, V_{-I}) + \epsilon\}.$

- V can be a set of landmarks, much smaller than X
- Monotonicity: $W_{\epsilon}^* \subseteq W_{\epsilon'}^*$ if $\epsilon \leq \epsilon'$
- But not easy to control homotopy types between W^* and X

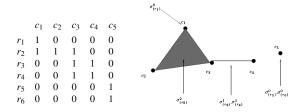
・ロン ・雪 と ・ ヨ と ・ ヨ と …

Outline	Simplicial Complex
	000000000000000000000000000000000000000

Some Applications

Simplicial Complex

Term-Document Co-occurrence Complex

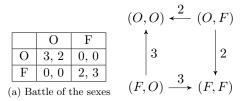


- Left is a term-document co-occurrence matrix
- Right is a simplicial complex representation of terms
- Connectivity analysis captures more information than Latent Semantic Index (Li & Kwong 2009)

Persistent Homology 0000000 Some Applications

Simplicial Complex

Strategic Simplicial Complex for Flow Games



- Strategic simplicial complex is the clique complex of pairwise comparison graph above, inspired by ranking
- Every game can be decomposed as the direct sum of potential games and zero-sum games (harmonic games) (Candogan, Menache, Ozdaglar and Parrilo 2010)

▲□ ► < □ ► </p>

Some Applications

Betti Number at Different Scales

Example I: Persistent Homology of Čech Complexes

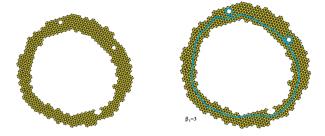


Figure: Scale ϵ_1 : $\beta_0 = 1$, $\beta_1 = 3$

A 10

Some Applications

Betti Number at Different Scales

Example I: Persistent Homology of Čech Complexes

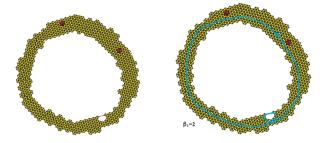


Figure: Scale ϵ_1 : $\beta_0 = 1$, $\beta_1 = 2$

y Simplicial Complex

Persistent Homology

Some Applications

Betti Number at Different Scales

Example II: Persistence 0-Homology induced by Height Function

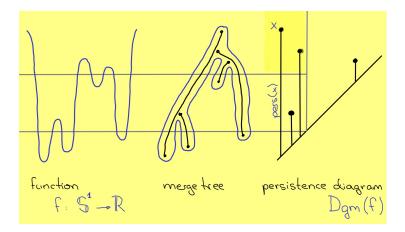


Figure: The birth and death of connected components.

Yuan Yao Fudan Summer School 2011

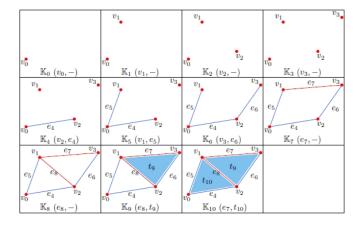
y Simplicial Comple>

Persistent Homology

Some Applications

Betti Number at Different Scales

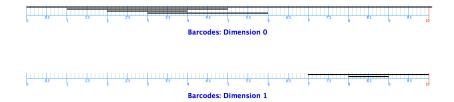
Example III: Persistent Homology as Online Algorithm to Track Topology Changements



Some Applications

Betti Number at Different Scales

Persistent Betti Numbers: Barcodes



- Toolbox: JPlex (http://comptop.stanford.edu/)
 - Java version of Plex, work with matlab
 - Rips, Witness complex, Persistence Homology
- Other Choices: Plex 2.5 for Matlab (not maintained any more), Dionysus (Dimitry Morozov)

Why Simplicial Comp

Persistent Homology

Some Applications

Algebraic Theory

Persistent Homology: Algebraic Theory [Zormorodian-Carlsson]

All above gives rise to a filtration of simplicial complex

$$\emptyset = \Sigma_0 \subseteq \Sigma_1 \subseteq \Sigma_2 \subseteq \ldots$$

 Functoriality of inclusion: there are homomorphisms between homology groups

$$0 \rightarrow H_1 \rightarrow H_2 \rightarrow \ldots$$

• A persistent homology is the image of H_i in H_j with j > i.

Outline	Simplicial Complex	Persistent Homology
		000000

Algebraic Theory

Persistent 0-Homology of Rips Complex

- Equivalent to single-linkage clustering
- Barcode is the single linkage dendrogram (tree) without labels
- Kleinberg's Impossibility Theorem for clustering: no clustering algorithm satisfies scale invariance, richness, and consistency
- Memoli & Carlsson 2009: single-linkage is the unique persistent clustering with scale invariance
- Open: but, is persistence the necessity for clustering?
- Notes: try matlab command linkage for single-linkage clustering.

Coverage

Application I: Sensor Network Coverage by Persistent Homology

- V. de Silva and R. Ghrist (2005) Coverage in sensor networks via persistent homology.
- Ideally sensor communication can be modeled by Rips complex
 two sensors has distance within a short range, then two sensors receive strong signals;
 - two sensors has distance within a middle range, then two sensors receive weak signals;
 - otherwise no signals

Coverage

Sandwich Theorem

Theorem (de Silva-Ghrist 2005)

Let X be a set of points in \mathbb{R}^d and $C_{\epsilon}(X)$ the Čech complex of the cover of X by balls of radius $\epsilon/2$. Then there is chain of inclusions

$$R_{\epsilon'}(X) \subset C_{\epsilon}(X) \subset R_{\epsilon}(X) \;\; whenever \;\;\; rac{\epsilon}{\epsilon'} \geq \sqrt{rac{2d}{d+1}}.$$

Moreover, this ratio is the smallest for which the inclusions hold in general.

Note: this gives a sufficient condition to detect holes in sensor network coverage

- Čech complex is hard to compute while Rips is easy;
- If a hole persists from $R_{\epsilon'}$ to R_{ϵ} , then it must exists in C_{ϵ} .

A 3 b

Outline Why Simplicial C

Persistent Homology 0000000 Some Applications

Coverage

Persistent 1-Homology in Rips Complexes

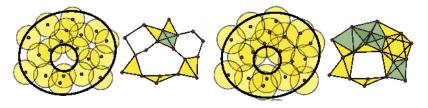


Figure: Left: $R_{\epsilon'}$; Right: R_{ϵ} . The middle hole persists from $R_{\epsilon'}$ to R_{ϵ} .

< ロ > < 同 > < 三 > <

Image

Application II: Natural Image Statistics

- G. Carlsson, V. de Silva, T. Ishkanov, A. Zomorodian (2008) On the local behavior of spaces of natural images, *International Journal of Computer Vision*, 76(1):1-12.
- An image taken by black and white digital camera can be viewed as a vector, with one coordinate for each pixel
- Each pixel has a "gray scale" value, can be thought of as a real number (in reality, takes one of 255 values)
- Typical camera uses tens of thousands of pixels, so images lie in a very high dimensional space, call it pixel space, P

A (1) < A (1) < A (1) < A (1) </p>

Natural Image Statistics

- **D. Mumford**: What can be said about the set of images $\mathcal{I} \subseteq \mathcal{P}$ one obtains when one takes many images with a digital camera?
- Lee, Mumford, Pedersen: Useful to study local structure of images statistically

- ₹ 🖬 🕨

< 67 ▶

/hy Simplicial Complex

Persistent Homology

Some Applications

э

Image

Natural Image Statistics

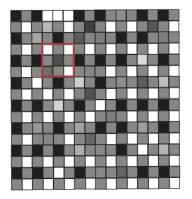


Figure: 3×3 patches in images

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Persistent Homology

Some Applications

Natural Image Statistics

Lee-Mumford-Pedersen [LMP] study only high contrast patches.

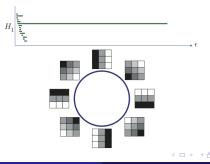
- Collect: 4.5*M* high contrast patches from a collection of images obtained by van Hateren and van der Schaaf
- Normalize mean intensity by subtracting mean from each pixel value to obtain patches with mean intensity = 0
- Puts data on an 8-D hyperplane, $\approx R^8$
- Furthermore, normalize contrast by dividing by the norm, so obtain patches with norm = 1, whence data lies on a 7-D ellipsoid, $\approx S^7$

Image

Natural Image Statistics: Primary Circle

High density subsets $\mathcal{M}(k = 300, t = 0.25)$:

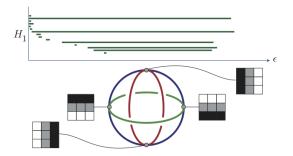
- Codensity filter: d_k(x) be the distance from x to its k-th nearest neighbor
 - the lower $d_k(x)$, the higher density of x
- Take k = 300, the extract 5,000 top t = 25% densest points, which concentrate on a primary circle



Persistent Homology 0000000 Some Applications

Natural Image Statistics: Three Circles

Take k = 15, the extract 5,000 top 25% densest points, which shows persistent $\beta_1 = 5$, 3-circle model



- ₹ 🖬 🕨

Vhy Simplicial Complex

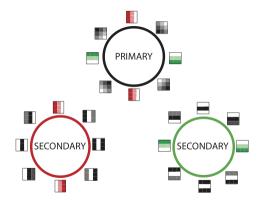
Persistent Homology

Some Applications

Image

Natural Image Statistics: Three Circles

Generators for 3 circles



< 同 ▶

< ∃ >

/hy Simplicial Complex

Persistent Homology

Some Applications

Image

Natural Image Statistics: Klein Bottle

< 同 ▶

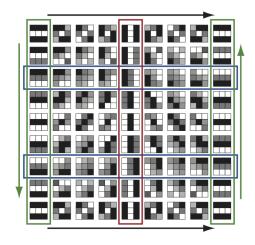
/hy Simplicial Complex

Persistent Homology

Some Applications

Image

Natural Image Statistics: Klein Bottle Model



< 1 →

A B + A B +

Molecular Dynamics

Application III: Persistent Homology and Discrete Morse Theory

- Persistent homology gives a pairing (birth-death) between a simplex and its co-dimensional one faces
- It leads to a particular implementation of Robin Forman's combinatorial gradient field
- Thus Persistent homology is equivalent to discrete Morse Theory by Robin Forman

Persistent Homology 0000000 Some Applications

Molecular Dynamics

Morse Theory and Reeb graph

- a nice (Morse) function: $h: \mathcal{X} \to \mathbb{R}$, on a smooth manifold \mathcal{X}
- topology of \mathcal{X} reconstructed from level sets $h^{-1}(t)$
- topological of $h^{-1}(t)$ only changes at 'critical values'
- Reeb graph: a simplified version, contracting into points the connected components in $h^{-1}(t)$

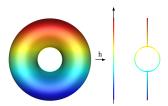
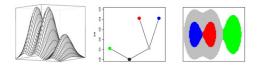


Figure: Construction of Reeb graph; h maps each point on torus to its height.

Outline		Simplicial Complex	Persistent Homology	Some Applications
				000000000000000000000000000000000000000
Molecular Dyna	mics			
	li a a ti a ma			
in app	lications			

Reeb graph has found various applications in computational geometry, statistics under different names.

- computer science: contour trees, reeb graphs
- statistics: density cluster trees (Hartigan)



Outline	Why 000000	Simplicial Complex	Persistent Homology 0000000	Some Applications
Molecular Dynamics				

Mapper: an extension for topological data analysis

[Singh-Memoli-Carlsson. Eurograph-PBG, 2007] Given a data set \mathcal{X} ,

- choose a filter map h : X → T, where T is a topological space such as ℝ, S¹, ℝ^d, etc.
- choose a cover $T \subseteq \cup_{\alpha} U_{\alpha}$
- cluster/partite level sets $h^{-1}(U_{\alpha})$ into $V_{\alpha,\beta}$
- **graph** representation: a node for each $V_{\alpha,\beta}$, an edge between $(V_{\alpha_1,\beta_1}, V_{\alpha_2,\beta_2})$ iff $U_{\alpha_1} \cap U_{\alpha_2} \neq \emptyset$ and $V_{\alpha_1,\beta_1} \cap V_{\alpha_2,\beta_2} \neq \emptyset$.
- extendable to simplicial complex representation.

Note: it extends Morse theory from \mathbb{R} to general topological space \mathcal{T} ; may lead to a particular implementation of Nerve theorem through filter map h.

/hy Simplicial Complex

Persistent Homology 0000000 Some Applications

Molecular Dynamics

An example with real valued filter

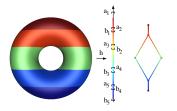


Figure: An illustration of Mapper.

Note:

- degree-one nodes contain local minima/maxima;
- degree-three nodes contain saddle points (critical points);
- degree-two nodes consist of regular points

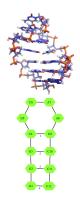
Vhy Simplicial Complex

Persistent Homology

Some Applications

Molecular Dynamics

Example: RNA Tetraloop



Biological relevance:

- serve as nucleation site for RNA folding
- form sequence specific tertiary interactions
- protein recognition sites
- certain Tetraloops can pause RNA transcription

Note: simple, but, biological debates over intermediate states on folding pathways

Figure: RNA GCAA-Tetraloop

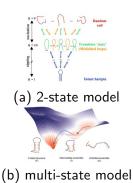
Vhy Simplicial Complex

Persistent Homology

Some Applications

Molecular Dynamics

Debates: Two-state vs. Multi-state Models



- 2-state: transition state with any one stem base pair, from thermodynamic experiments [Ansari A, et al. PNAS, 2001, 98: 7771-7776]
- multi-state: there is a stable intermediate state, which contains collapsed structures, from kinetic measurements [Ma H, et al. PNAS, 2007, 104:712-6]
- experiments: no structural information
- computer simulations at full-atom resolution:
 - exisitence of intermediate states
 - if yes, what's the structure?

Molecular Dynamics

Mapper with density filters in biomolecular folding

Reference: Bowman-Huang-Yao et al. J. Am. Chem. Soc. 2008; Yao, Sun, Huang, et al. J. Chem. Phys. 2009.

- densest regions (energy basins) may correspond to metastates (e.g. folded, extended)
- intermediate/transition states on pathways connecting them are relatively sparse
- Therefore with Mapper
 - clustering on density level sets helps separate and identify metastates and intermediate/transition states
 - graph representation reflects kinetic connectivity between states

I ≡ ▶ < </p>

Outline	Why 000000000000	Simplicial Complex	Persistent Homology 0000000	Some Applications
Molecular Dynamics				
Augnilla	Varalan			

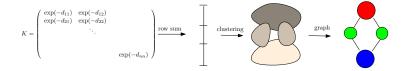


Figure: Mapper Flow Chart

- **1** Kernel density estimation $h(x) = \sum_{i} K(x, x_i)$ with Hamming distance for contact maps
- 2 Rank the data by *h* and divide the data into *n* overlapped sets
- 3 Single-linkage clustering on each level sets
- 4 Graphical representation

version

Persistent Homology

Some Applications

Molecular Dynamics

Mapper output for Unfolding Pathways

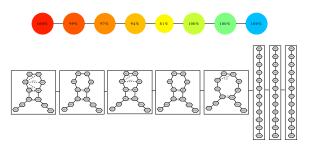


Figure: Unfolding pathway

▲ 同 ▶ → 三 ▶

/hy Simplicial Comple:

Persistent Homology

Some Applications

Molecular Dynamics

Mapper output for Refolding Pathways

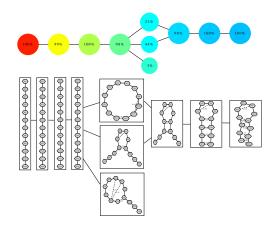


Figure: Refolding pathway

Progression Analysis of Disease

Application IV: Progression Analysis for Breast Cancer

- Nicolau, Levine, Carlsson, PNAS, 2010
- Deviation functions from normal tissues are used as filters (Morse-type functions)
- Mapper (Reeb Graph) with such filters leads to Progression Analysis of Disease

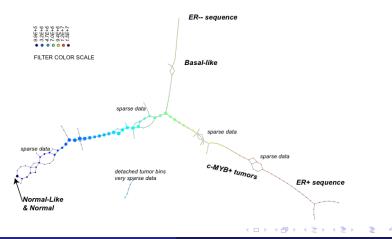
y Simplicial Complex

Persistent Homology

Some Applications

Progression Analysis of Disease

PAD analysis of the NKI data



Outline		Simplicial Complex	Persistent Homology	Some Applications
				000000000000000000000000000000000000000
Progression Ana	alysis of Disease			
Refere	nce			

- Edelsbrunner, Letscher, and Zomorodian (2002) Topological Persistence and Simplification.
- Ghrist, R. (2007) Barcdes: the Persistent Topology of Data. Bulletin of AMS, 45(1):61-75.
- Edelsbrunner, Harer (2008) Persistent Homology a survey. Contemporary Mathematics.
- Carlsson, G. (2009) Topology and Data. *Bulletin of AMS*, 46(2):255-308.