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* We look for distance function such that

e dist(A,C) is small

* dist(A,B) is large
* Geodesic distance is one candidate, but hard to compute and sensitive to noise
* Any other distance with such properties but robust to stochastic noise?



Data Graph

* Given n points x;, i=1,...,n, as vertices in V
* Similarity weight between x; and x;is w;=w;,
e.g.

xl.—xj

w. =k R™ | J(f) =" 2
l] ( /\/g ] ()

* Undirected weighted graph G(V,E,W), W=(w,)




Random Walk on Graphs

* Degreed.=%, w,, D =diag(d)
e Random walk on G(V.E,W)
— Transition probability P = D' W where p; = w;/d,
— Stationary distribution 1.~ d.
— Irreducible (G is connected)
— Reversible w;; = w;; == 1, p; =11 p;;



Symmetric Kernel

e P=D1W issimilarto S = D'Y2WDY/2, 35 P = D'1/25D1/2

* Sisreal symmetric, whence eigen-decomposition

S=VAV', A =diag(A, ER)

%) P=DWVAV'D">-0AW, ®=-D"V, W=D"¥



Spectrum of P

* Eigenvalues of S and P are the same, so

‘)\.i‘ <1

* @ and W are right and left eigenvector matrix of P,
respectively, Q™Y = VTV = |
* In particular, P1 =1, whence

d.
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Diffusion Map

* Let A be sorted by
=4 2‘)»2‘2...2

A'Fl

* Diffusion map of x is defined via right eigenvectors

[ X9,G)
A, (i)

CI)t(xl.) = ER"

\A,9, (D))



Dimensionality Reduction

* A;=1and ¢,=1, soit does not distinguish points
* Threshold by 0, for those

A
A

=>1-0, i=1,...m,

<1-0, k>m
* Define o
()"2¢2(l)

A0 (i
3¢.3 () =
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Diffusion Distance

* Define the diffusion distance between points
at scale t

CI)t(xl.) —CI)t(xj)

D,(x,.x,) = L= K9 (x) = 9,(x)))’

* This is exactly the weighted 2-distance
between diffusion profiles

= § (Py - Pth)2
dk

P. — P!

J

D,(x;,x;):=

12(1/d)
k=2



Lumpability of Markov Chains

e Let P be the transition matrix of a Markov chain defined
on n states S={1,...,n}.

* ={S,,...,S.} 1s a partition of S into k macrostates.
* Sequences {X,,...,X,...} generated by P, i.e.
Prob(x.=j ; X.1=1)= P;
* Induced dynamics: relabel x, by y, from corresponding
states in partition
 [Kemeny-Snell’76] P is called lumpable if
Prob(y.=kg; V.1=Ky, -, Ye.m=K) = Prob(y,=k,; v, 1=K,)
1.e. the induced dynamics is Markovian.



A Necessary and Sufficient
Condition for Lumpability

* [Kemeny-Snell’76] P is lumpable w.r.t. partition I={S,,...,S, }
iff for any s, t chosen from P, and for any i, j lying in S, the
following holds

Pip= ij

where P = Epik

kES,




Spectral Theory of Lumpability

[Meila-Shi 2001] P is lumpable w.r.t. P iff P has k independent piece-wise
constant right eigenvectors in the span of characteristic functions of I={S,,

s SE)

Special case: If P is block diagonal, i.e. uncoupled Markov chain, then P is
lumpable with piece-wise constant right eigenvectors associated with multiple
eigenvalue 1.

[e.g. Belkin-Shi-Yu 2007] If P is nearly block diagonal, then there are top-k
eigenvectors which fix signs within the block.

\
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* Consider 2n nodes on a linear chain

* Markov Chain: a node will jump to its
neighbors with equal probability
— P(i, i-1) = P(i, i+1) = %, for 2n>i>1
— P(1,2) =P(2n,2n-1) = 1



Example I
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e Pis IUmpable W.r.t. I-*z(sevenlsodd)
- S
— S, q4q: 0dd nodes

e [* corresponds to eigenvector with eigenvalue
-1

:even nodes

even*



Spectral Clustering Algorithm

e Typical spectral algorithm to find lumpable states in nearly
uncoupled systems [Ng-Jordan-Weiss NIPS’01]:

1) Find top k right eigenvectors of P where a large
spectral gap occurs, v,,...,v,

2) Embed the data into R* by those eigenvectors
3) Use k-means (or alternatives) to find k clusters in Rk

(o) o (a)



Graph Partition Problem

e goal: find a cut with the smallest Cheeger ratio (conductance)
o For S CV, volume of S: vol(S) = >, cg dv
o 0S ={(u,v) e E:u€ S&v e S}

o Cheeger ratio of S, h(S) = min{vol(S) !Uaof(lc)—vol(s)}

e applications

o clustering
o segmentation

o task partitioning for parallel processing

o a preprocessing step to
divide-and-conquer algorithms

EXX
Geometric Computing §§
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Graph Laplacian Operator

e given an undirected graph G=(V, E),

o Adjacency matrix A:

: 2
A(u,v)z{ 1 fu~w } %
0 o.w. 4
3
o Diagonal degree matrix D = diag(dy,,- -+ ,dv,)

o Graph Laplace Operator L = D~1(D — A)
o Tranistion probability matrix W =D 1A=1—-L,
o Wv = Av implies Lv = (1 — A\)v

o 1 is the largest eigenvalue for W’; 0 is the smallest eigenvalue for L.



Graph Partition Problem

e Rayleigh quotient R(f) = Z“'i‘:’(ff(;‘()u_)giv))z for f #0

o find a boolean function f minimizing R(f) <= NP-complete
o RELAXATION: find a real valued function f minimizing R(f)

(D—A
o R(f) = S5

o A1 = infy R(f) = A1 and f are the first nonzero
eigenvalue and eigenvector of L.

How good is this relaxation? Cheeger inequality



O

O

Cheeger Inequality

h2 2
2halez§zh§.

f is the eigenvector of L corresponding to A1

hg is the smallest conductance (Cheeger ratio) of graph G

hs: the minimum Cheeger ratio determinded by a sweep of f
- order the vertices: f(v1) > f(v2) > -+ > f(vn).

- S = {1, ,v5)

- hy = min; hg,

find a partition whose conductance is within 2v/hg
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* One graph min-cut given by second largest right
eigenvector of T
* n=g,
— v,=[0.4714 0.4247 0.2939 0.1049 -0.1049
-0.2939 -0.4247 -0.4714]

— Eigenvalue is 0.9010



Connections to Manifold Learning

Given z1,...,x, € M C RY,
Find y1,...,y, € R* where d << N
s ISOMAP (Tenenbaum, et al, 00)
s LLE (Roweis, Saul, 00)
» Laplacian Eigenmaps (Belkin, Niyogi, 01)
» Local Tangent Space Alignment (Zhang, Zha, 02)
» Hessian Eigenmaps (Donoho, Grimes, 02)
» Diffusion Maps (Coifman, Lafon, et al, 04)

Related: Kernel PCA (Schoelkopf, et al, 98)



All you wanna know about
differential geometry but were
afraid to ask, in 9 easy slides



Embeded Manifolds

MFE c RN

Locally (not globally) looks like Euclidean space.

S? c R?




Tangent Space

T,M" Cc RY

k-dimensional affine subspace of RY.



Tangent Vectors and Curves

Tangent vectors <———> curves.



Riemannian Geometry

Norms and angles in tangent space.

(v, w) —lvf], Jlwl]



Geodesics

o(t) : [0,1] — MF

1

16) = |

0

d¢
— || dt
i

Can measure length using norm in tangent space.

Geodesic — shortest curve between two points.



Gradients

Tangent vectors <———>  Directional derivatives.

Gradient points in the direction of maximum change.



Tangent Vectors vs. Derivatives

P 4wy

P . o(t) : R — MF

flo(t) R —R

df d (o)
dv dt 0

Tangent vectors <———>  Directional derivatives.




Exponential Maps

exp), Tp/\/lk — MF

exp,(v) =1 exp,(w) =q

Geodesic ¢(t)

#(0) = p, o(lv]) = ¢ %f) =



Laplacian-Beltrami Operator

foMF SR

exp,, : Tp./\/lk — MF

02 f(exp, (x
st = 5 2L

1 (/

Orthonormal coordinate system.



Meta-Algorithm

1. Construct a neighborhood graph
2. Construct a positive semi-definite kernel
3. Find the eigen-decomposition

:[> Kernel :[> Spectrum




Recall: MDS

* |dea: Distances -> Inner Products -> Embedding
* |Inner Product:
e = y[" = Geox) +(.3) = 2(x,y)
D,=K,+K,-2K,
N K=—%HDHT, H=I—%11T
* Kis positive semi-definite with

K=UAU" =YY", Y =UAN"



Recall: ISOMAP

1. Construct Neighborhood Graph.
2. Find shortest path (geodesic) distances.

Dz'j IS X n

3. Embed using Multidimensional Scaling.



Recall: LLE (T)

1. Construct Neighborhood Graph.

2. Let z1,...,z, be neighbors of z. Project x to the span of

Tlyenv, Ty

3. Find barycentric coordinates of z.

® X

T = wWir1 + woxry + w3xs
ex,

> e

w1+ wo +ws =1

AY
el
\
\

X, Welghts w1, wa, w3 chosen,
so that z is the center of mass.



Recall: LLE (II)

4. Construct sparse matrix 1. ¢ th row is barycentric
coordinates of z; in the basis of its nearest neighbors.

5. Use lowest eigenvectors of (I — W){(I — W) to embed.



Laplacian and LLE

®- O
Xl \‘~\\\\\ O //,/’ Zwixi:0
Sy
/
/
/
w; =1
,f >
/
/
® X, Hessian H. Taylor expansion :

f(wi) = F(0) + @tV f + St + ol i)

(T = W)F(0) = F(0) = Y wif (@) ~ F(0) = 3 wif (0) = Y wial v - % > ol Hai =

1
= —§foHxZ ~—trH = Af
1



Laplacian Eigenmaps (I)
[Belkin-Niyogi]

Step 1 [Constructing the Graph]
€ij = 1 & x; “close to” Xj

1. e-neighborhoods. [parameter e € R] Nodes i and j are connected by an edge if

i —x;* < e

2. n nearest neighbors. [parametern € N] Nodes i and j are connected by an edge if 7 is among
n nearest neighbors of j or j is among n nearest neighbors of 3.



Laplacian Eigenmaps (IT)

Step 2. [Choosing the weights].

1. Heat kernel. [parametert € R]. If nodes i and j are connected, put

g —x51012

Wij:e t

2. Simple-minded. [No parameters]. W;; = 1 if and only if vertices ¢ and j are connected by an
edge.



Laplacian Eigenmaps (IIT)

Step 3. [Eigenmaps] Compute eigenvalues and eigenvectors for the generalized eigenvector problem:

Lf=\Df

D is diagonal matrix where

Let fo, ..., fi_1 be eigenvectors.
Leave out the eigenvector fy and use the next m lowest eigenvectors for embedding in an

m-~dimensional Euclidean space.



Justification

Find yq,...,y, € R

min Z(yz — yj)ZW-j
2,]

Tries to preserve locality



A Fundamental Identity

But

- Z yj 2Wzg TLy

> (Wi —y)*Wig => (U7 + Y5 — 2uiy;) Wiy
i i

= Z y; Dii + Z y;Djj — 2 Z Yiyj Wi
( J 1,J

=2y’ Ly



Embedding as Eigenmaps

min yTLy
yT1=0

LetY = [y1y2...ym]

> Y — Y;||°Wi; = trace(Y T LY)
1,7

subjectto YTY = I.
Use eigenvectors of L to embed.



On the Manifold

smoothmap f: M — R

/M IV s~ S Wi (fi — )7

1~]

Recall standard gradient in R* of f(z1,..., z)

.

~~

CDQJQD
S‘\B‘

Vf=

Q
>



Stokes Theorem

A Basic Fact
[ IV = /f Apf
M
This is like
Z Wi (f = fTLf
where

A r f 1S the manifold Laplacian



Manifold Laplacian

Recall ordinary Laplacian in R*
This maps

k 02
firam = (-3 5]
1=1 t

Manifold Laplacian is the same on the tangent space.




Manifold Laplacian Eigenvectors

Eigensystem
Apmf = Nioi

)\izoandAiHOO

{¢;} form an orthonormal basis for L?(M)

/ IV eil® = A

Manifold Laplacian is non-compact!



Example: Circle

G
d*u

——5 = Au where u(0) = u(2n)

Eigenvalues are

Eigenfunctions are

sin(nt), cos(nt)

Spherical Harmonics in high-D sphere!



Spectral Growth

Alg)\g...g)\jg...
Then

2 2
A+ ~ log(j) <log(A\j) < B+ -~ log(7 +1)

Example: on S*

. 2 .
\j=3j° = log(\j) = T log(j)

(Li and Yau; Weyl’s asymptotics)



From Graph to Manifolds

f-M—=R zeM z...,20pEM

Graph Laplacian:

L) = J@) e = e

J J

[ ] J— 1 I
Theorem [pointwise convergence] t, =n" *+e

k+2
At )~ 2
lim (47tn)

n— 00 n

Ly f(x) = Apf(x)

Belkin 03, Lafon Coifman 04, Belkin Niyogi 05, Hein et al 05



From Graph to Manifolds

Theorem [convergence of eigenfunctions]

lim  Eig[L!"] — Eig[An]

t—0,n—00

Belkin Niyogi 06



Heat Diffusion Map

e Gaussian kernel

Normalize kernel

K, (x,y)
P (x)p*(y)

e Renormalized kernel

o -onf-L 21

K“(x,y) = where  p(x) = ng (x,y)du(y)

K(O!)
e 1

— a=1, Laplacian-Beltrami operator, separate
geometry from density

— a=0, classical normalized graph Laplacian

— a=1/2, backward Fokkar-Planck operator
Coifman-Lafon 2006. Diffusion Maps.



Heat Diffusion Distance

Heat diffusion OperatOr H . g =exp(-tL,) where L =I-D"*WD™"?
6 and ¢, initial heat distributions.

Diffusion distance between z and y:

| H'6 — H 6yl 12

Difference between heat distributions after time <.



Note:
Another choice of eigenmaps

* Normalized positive semi-definite Laplacian
L — D—l/z(D_W)D—l/Z — I_D—l/ZWD—]/Z
* ¢, is an eigenvector of L_with eigenvalue A,

* Normalized Laplacian eigenmaps:

Y=(A20 A . A7)



Connections to Markov Chain

L = D-W: unnormalized graph Laplacian
L,=D*/? [ D¥/?: normalized graph Laplacian
P=1-D1L = D'W is the markov matrix
v is generalized eigenvectorof L: Lv=ADv

v is also a right eigenvector of P with eigenvalue 1-
A

D2 v is eigenvectors of L with eigenvalue A
P is lumpable iff v is piece-wise constant

So v is the most often choice of Laplacian
eigenmaps and Diffusion Map



Two Assumptions on ISOMAP

(ISO1)

(ISO2)

Isometry. The mapping v preserves geodesic distances. That is, define a distance between
two points m and m’ on the manifold according to the distance travelled by a bug walking
along the manifold M according to the shortest path between m and m’. Then the
isometry assumption says that

G(m,m") =16 — 0|, Vm < 0, m' — ¢,
where | - | denotes Euclidean distance in R

Convezity. The parameter space O is a convex subset of R?. That is, if 6,0’ is a pair of
points in ©, then the entire line segment {(1 —¢)0 + 0" : t € (0,1)} lies in ©.

Convexity is hard to meet: consider two balls in an image which never
intersect, whose center coordinate space (x;,Y,X,,Y,) must have a hole.



Relaxations
(Donoho-Grimes'2003)

(LocISO1) Local Isometry. In a small enough neighborhood of each point m, geodesic distances to
nearby points m’ in M are identical to Euclidean distances between the corresponding

parameter points 6 and 6.

(LocISO2) Connectedness. The parameter space O is a open connected subset of R



Hessian LLE

Summary
Build graph from K Nearest Neighbors.
Estimate tangent Hessians.
Compute embedding based on Hessians.
f:X—->NR Basis(null(jHHf (x)H)dx)z Basis(X)
Predictions
Specifically set up to handle non-convexity.
Slower than LLE & Laplacian.
Will perform poorly in sparse regions.
Only method with convergence guarantees.

Note that: A(f) = trace(H(f))



Convergence of Hessian LLE
(Donoho-Grimes)

Theorem 1 Suppose M = 1)(0) where © is an open connected subset of R?, and 1) is a locally
isometric embedding of © into R™. Then H(f) has a d+ 1 dimensional nullspace, consisting of

the constant function and a d-dimensional space of functions spanned by the original isometric
coordinates.

We give the proof in Appendix A.

Corollary 2 Under the same assumptions as Theorem 1, the original isometric coordinates 6
can be recovered, up to a rigid motion, by identifying a suitable basis for the null space of H(f).



Comparisons oh Swiss Roll
with holes
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Comparisons of Manifold Learning
Techniques

e MDS

e PCA
 |ISOMAP
 LLE

* Hessian LLE

e Laplacian LLE
e Diffusion Map

* Local Tangent Space Alignment
* Matlab codes: mani.m

Courtesy of Todd Wittman
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