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Abstract

In this report,we first talk about using MLE to estimate parameters in SEM,and

we assume the structure just has three observed variables and three independent nor-

mal measurement-error variables.Specially we also assume some parameters stand for

different type of structures.Secondly, we try to build confidence set by log-likelihood

ratio for parameters talking above.
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1. The MLE of SEM with assumed structure

the sem package in R is a tool to solve SEM with assumed structure. Inter-

nally, the sem function employs the recticular action model(RAM) formulation of

model[1].

In the RAM model, the vector ν contains indicator variables, directly ob-

served exogenous variables, and latent exogenous and endogenous variables; vector

µ (which may overlap with ν)contains directly observed and latent exogenous vari-

ables, measurement-error variables, and structural-error variables. Not all classes of

variables are present in every model.

The ν and µ vectors are related by the equation

ν = Aν + µ

P = cov(µ)

where the matrix A contains regression coefficients,the matrix P contains covariances

among the elements of µ.

Let m represent the number of variables in ν, and let the first n entries of ν be

the observed variables of the model. The the m× n selection matrix J=





In 0

0 0





picks out the observed variables, where In is an order-n identity matrix and the 0s

are zero matrices of appropriate order. Covariance among the observed variables

are therefore given by

C = E(Jνν ′J ′) = J(Im −A)−1P [(Im − A)−1]′J−1

Let S denote the covariances among the observed variables computed directly

from a sample of data. Estimating the parameters of the model the uncon-

strained entries of A and P entails picking values of the parameters that make

C close in some sense to S. In particular, under the assumption that the latent vari-

ables and errors are multinormally distribution, maximum likelihood(ML)estimates
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of the parameters minimize the fitting criterion

F (A, P ) = log(|C|) + trace(SC−1)− n− log(|S|) (1)

The sem function minimizes the ML fitting criterion numerically using the

nlm optimizer in R, which employs a Newton-type algorithm; sem by default uses

an analytic gradient, but a numerical gradient may be optionally employed. The

covariance matrix of the parameter estimates is based on the numerical Hessian

return by nlm.

2. The MLE of SEM without structure assump-

tion

Let the parameters are θ = (γ, β) ,where γ are parameters stand for different

type of structures and β are parameters under fixed structure(which mean the rest

parameters after fixed γ).

In this report, we just discuss models which contain three observed variables

and three independent normal measurement-error variables. Some models in SEM

could not be identified,such as models which have feedback relationships, so we use

Recursive Rules as a sufficient condition of identifiable. Figure2.1 shows all models

which are identifiable. Depending on the discussion above, there are 24 models we

can choose, so β ∈ {1, 2, . . . , 24}.

Under the assumption that errors are multinormally distribution, maximum

likelihood(ML)estimates of the parameters are

arg max
θ

P (θ|x) = arg max
γ,β

P (γ, β|x)

= arg max
i=1,2,...,24

(

max
β

P (γi, β|x)

)

= arg min
i=1,2,...,24

(

min
β

F (Ai, Pi)

)

(2)

where F (Ai, Pi) is the the criterion (1) under Modeli.

The problem of MLE(2)

(1) The knee of scree plot between the value of criterion(1) and corresponding

model number.

3



Some problems in SEM

x1 // x2 x1 x2oo x1 x2 x1 x2

��
x3 x3 x3

OO

x3

M1 M2 M3 M4

x1 x2 x1

##F

F

F

F

F

F

F

F

x2 x1 // x2

��

x1 x2oo

x3

ccF
F

F

F

F

F

F

F

x3 x3 x3

OO

M5 M6 M7 M8

x1 // x2 x1

##F

F

F

F

F

F

F

F

x2oo x1

##F

F

F

F

F

F

F

F

x2 x1 x2

��
x3

ccF
F

F

F

F

F

F

F

x3 x3

OO

x3

ccF
F

F

F

F

F

F

F

M9 M10 M11 M12

x1 //

##F

F

F

F

F

F

F

F

x2 x1 x2 x1 x2oo

��

x1 x2oo

x3 x3

ccF
F

F

F

F

F

F

F

OO

x3 x3

ccF
F

F

F

F

F

F

F

M13 M14 M15 M16

x1

##F

F

F

F

F

F

F

F

x2

��

x1 // x2 x1 //

##F

F

F

F

F

F

F

F

x2

��

x1 // x2

x3 x3

OO

x3 x3

OOccF
F

F

F

F

F

F

F

M17 M18 M19 M20

x1

##F

F

F

F

F

F

F

F

x2oo

��

x1 x2oo

��

x1 //

##F

F

F

F

F

F

F

F

x2 x1 // x2

x3 x3

ccF
F

F

F

F

F

F

F

x3

OO

x3

OOccF
F

F

F

F

F

F

F

M21 M22 M23 M24

1 Figure2.1 all models with three variables

4



Some problems in SEM

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

or
de

rr
es

ul
t$

x

M20M21M22M23M24M19M18M16
M15 M7 M8 M13 M9 M10 M2 M1

M17
M11M12M14 M3 M4 M5 M6

Figure 2.2 Scree plot of Model1

Figure 2.2 has a obviously knee point between M1 and M17, and models before this

knee point all contain the true model M1. Figure 2.2 also shows that models are

ordered by their complexity.

So we guess that the true model is near the knee point for sparse model.
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Figure 2.3 Scree plot of Model10

Figure 2.3 has a obviously knee point between M13 and M15, and models before

this knee point all contain the true model M10.
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Figure 2.4 Scree plot of Model20

Figure 2.3 has a obviously knee point between M19 and M7, but some models

before this knee point don’t contain the true model M10,such as M9 M10 M13. And

these three models just miss one relationship in true model.

(2) MLE (2)can not find the true model exactly, it favours complex models.

The models which contain all relationships in the true model and some other

relationships more than the true model always have lower value than the true model

in the criterion(1). So the most complex model which contain the true model would

be the MLE(2). for example, in Figure 2.2 ,the true model is Model1,but the MLE

is Model20 which contain Model1.

(3) MLE(2) can not distinguish the direction of relationships.

The change of directions almost has no impact to the value of the criterion(1).
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Even when variances of measurement-error are different, MLE still can not distin-

guish the direction.

(4) The model modification tests(likelihood ratio test page 138 ) of MLE works

good.

MLE(2) always a models which contain the true model, but more complex

than the true model. Fortunately, model modification tests can help to test out

relationships that don’t exist.

For example, sample x comes from Model1, but the MLE(2) is Model20. The

result of model modification tests is in Table.1

Talbe.1 The result of model modification tests

Estimate Std− Error z − value Pr( |z|)

β21 1.052173 0.073526 14.31031 0.00000 x2 ←− x1

β13 0.047524 0.068924 0.68952 0.49050 x1 ←− x3

β23 -0.152060 0.069013 -2.20335 0.02757 x2 ←− x3

.

3. The confidence set of SEM

Section two shows that the MLE of θ = (γ, β) ,which contains parameters

that represent the different between structures(models), is not convergent to the

true value exactly. Such as in the example above, γ ∈ {1, 2, . . . , 24} stands for 24

models, and estimating γ is the selection of structures. But MLE is not a good

estimator of γ, it could not found out the true structure. So we try to built a

confidence set of SEM by log-likelihood radio.

Fang[2] gave a general way to built confidence set, we choose log-likelihood

radio as design function

h(x, θ) = logP (θ̂|x)− logP (θ|x)

where θ̂ is the MLE of θ. Set

G(x, θ) = Pθ(h(X, θ) ≥ h(x, θ))
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where x ∈ R
3 and θ ∈ {1, 2, . . . , 24}×R

p. For given α ∈ (0, 1) and any x ∈ R
3,define

the confidence set

S(x) = {θ : θ ∈ {1, 2, . . . , 24} × R
p and G(x, θ) > α}

For every θ ∈ {1, 2, . . . , 24}×R
p ,the distribution of h(x, θ) shows by numberical

results.

Algorithm 1:

(1) Fix θ0 ∈ {1, 2, . . . , 24} × R
p and K=2000 (iterations).

(2) Generate x(i) from P (x|θ0), i = 1, 2, . . . , K.

(3) Calculate h(i) = log(|Cθ̂|) + trace(SC−1

θ̂
)− log(|Cθ0|)− trace(SC−1

θ0
),where

θ̂ is the MLE of θ, i = 1, 2, . . . , K.

(4) Plot the histogram of h(x, θ0) by sample h(i), i = 1, 2, . . . , K
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Figure 2.5 Histogram of h in Model1
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Figure 2.5 is the histogram of h(x, θ1), where θ1 = 1×
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Figure 2.6 Histogram of h in Model10

Figure 2.6 is the histogram of h(x, θ10), where θ10 = 10×
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Figure 2.7 Histogram of h in Model20

Figure 2.6 is the histogram of h(x, θ20), where θ20 = 20×
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Above three pictures show that with different θ the shapes of the distribution

of h(x, θ) are different, and the distributions are not symmetrical. For examples,

Model1 is partial to left , Model10 is partial to right, and the variance of Model20

is smaller than the other two models’.

For any θ0, if Pθ0(h(X, θ0 ≥ h(x, θ0))) > α, then θ0 belong to the confidence set

that we built. Using the numberical results above, Pθ0(θ0 ∈ S(x)) can be estimated.

Algorithm2:

(1) Fix θ0 ∈ {1, 2, . . . , 24} × R
p , k=200 (iterations) and α = 0.05.

(2) Generate x(j) from P (x|θ0), j = 1, 2, . . . , k.
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(3) Calculate I(j) = I{ ♯{j:hj≥h(x(j),θ̂)}
K

> α}, where K = 2000,j = 1, 2, . . . , k.

(4)CalculateP̂θ0(θ0 ∈ S(x)) =
P

I(j)

k
.

P̂θ0(θ0 ∈ S(x)) and the numberical under quantile of the distribution of h(x, θ0)

are given in the Table.2.

Talbe.2 p-value and quantile

coveragerate under quantile of α = 0.5

θ1 0.885 0.009193197

θ10 0.94 0.03515166

θ20 0.975 0.03602372
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