
Clustering by IF-PCA for sequencing data

Jiashun Jin and Wanrong Zhang

Jiashun Jin(CMU) Wanrong Zhang(PKU)

November 29, 2015

Wanrong Zhang Clustering by IF-PCA for sequencing data



Higher Criticism(HC)

In his Class Notes for Statistics 411 at Princeton University in
1976, Tukey introduced the notion of the higher criticism by means
of a story. A young psychologist administers many hypothesis tests
as part of a research project, and finds that, of 250 tests 11 were
significant at the 0.05 level. The young researcher feels very proud
of this fact and is ready to make a big deal about it, until a senior
researcher suggests that one would expect 12.5 significant tests
even in the purely null case, merely by chance. In that sense,
finding only 11 significant results is actually somewhat
disappointing!
He then proposed a sort of second-level significance testing, based
on the statistic
HC0.05,n =

√
FractionSignificantat0.05)− 0.05/

√
0.05 ∗ 0.95, and

suggested that values of (say) 2 or greater indicate a kind of
significance of the overall body of tests.

Wanrong Zhang Clustering by IF-PCA for sequencing data



Higher Criticism(HC)

Proposed by Donoho and Jin(2004) for sparse signal detection

Higher Criticism is effective at resolving a very subtle testing
problem: testing whether n normal means are all zero versus
the alternative that a small fraction is nonzero:

H0 : Xi ∼ N(0, 1), i = 1, 2, . . . , n

H1 : Xi ∼ (1− λ)N(0, 1) + λN(µ, 1), i = 1, 2, . . . , n
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Higher Criticism(HC)

Let pi = P(N(0, 1) > Xi ) be the p-value for the ith component
null hypothesis, and let the p(i) denote the p-values sorted in
increasing order, so that under the intersection null hypothesis the
p(i) behave like order statistics from a uniform distribution.

HCn = max1≤i≤nα0

√
n(i/n − p(i))/

√
p(i)(1− p(i))

To use HCn to conduct a level- test, we must find a critical value
h(n, α):

PH0(HCn ≥ h(n, α)) ≥ α
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Higher Criticism(HC)

THEOREM 1 Under the null hypothesis H0,

HCn√
2loglog(n)

p−→ 1

THEOREM 2 Consider the higher criticism test that rejects H0
when

HCn > h(n, αn)

where h(n, αn) =
√

2loglog(n)(1 + o(1))
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Higher Criticism(HC)

The asymptotic detection boundary

λn = n−β, µn =
√

2rlog(n)

The detection boundary is

f (β) = β − 1

2
,

1

2
≤ β ≤ 3

4

f (β) = (1−
√

1− β)2,
3

4
≤ β ≤ 1

if r > f (β), H0 and H1 separate asymptotically, if r < f (β), H0

and H1 merge asymptotically.
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Clustering by IF-PCA

Sequencing data:

High dimensional data p >> n

Discrete(read counts data)

Dimension reduction: Idea: PCA applied to a small fraction of
selected features
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Negative binomial model

Let Y be an negative binomial random variable with mean µ and
dispersion φ, denoted Y ∼ NB(µ, φ). The probability function is

f (y ;µ, φ) = P(Y = y) =
Γ(y + φ−1)

Γ(φ−1)Γ(y + 1)
(

1

1 + µφ
)φ

−1
(

µ

φ−1 + µ
)

giving E (Y ) = µ and var(Y ) = µ+ φµ2. Consider Y1, . . . ,Yn

follow NB(µi = miλj , φ), where mi is the library size (the total
number of RNA-seq reads in sample i) and λj represents the
proportion of the library that can map to the particular gene j . For
K different groups, we can model

Yi ∼ NB(miλk , φ), i ∈ groupK
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Calibration between samples

Denote the library size of sample i by mi , scaling each row of X
and denote the resultant matrix by W:

W (i , j) = round [X (i , j)/mi ∗ m̄]

We round W to integer in order to fit negative binomial model we
presented before.
Denote the counts matrix by:

X = [Xi ,X2, . . . ,Xn]T

which each column represents the feature and each row represents
the sample.
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Important features

Classical PCA is ineffective in such setting that p >> n, because
noise can be strong. But we can think of a method to reduce the
dimension, only left some useful features. If j is a useless feature
for clustering, we have

mλ1(j) = mλ2(j) = . . . = mλK (j)
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Important features

H0,j : Xij ∼ NB(mλ(j), φ), i = 1, 2, . . . , n

H1,j : Xij ∼
K∑

k=1

NB(m(λ(j) + λk(j)), φ), i = 1, 2, . . . , n

The null sampling distribution may be approximated by the Monte
Carlo estimate. A p-value can be obtained as the proportion of
simulated samples that produce a Pearson statistic as extreme or
more extreme than the observed one.
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Implement of Monte Carlo goodness of fit test

Fit an NB model from the data
Y 0 = (Y1, . . . ,Yn)T = W (:, j),estimate all the parameters by
MLE and calculate Pearson residuals r0 = (r01 , . . . , r

0
n )

(ri = Yi−µ
s ,where µ is estimated mean and s is estimated

standard error.

Simulate R random vectors: For h = 1, . . . ,R, simulate a
random vector Y h from NB(µ, θ) and compute Pearson
residual rh as step 1.

Compute the sum of squared deviation of each residual vector
from the median of its sampling
distributiondh =

∑n
i=1(rhi − r̄h)2 for h = 0, 1, . . . ,R

Compute a Monte Carlo GOF test p-value

byπj =
∑R

h=1 I (d
h≥d0)

R , where I () is the indicator function.
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Choosing threshold by HC

Sort P-values in the ascending order π(1) ≤ π(2) ≤ . . . ≤ π(p).

Define HCj =
√

p(j/p − π(j))/
√

max
√

n(j/p − π(j)), 0 + j/p

and let (̂j) = argmaxj :π(j)>log(p)/p,j<p/2HCj . HC threthold tHCp

is the j-smallest p-value.
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Clustering by PCA and K-means

Let W(HC) be the matrix formed by restricting the columns of W :

W(HC) = W (:, πj < tHC
p ), and U be the matrix of the first K − 1

left singular vectors of W(HC). Clustering U by classical K-means.
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Clustering results

Data set p n selected features K

Mouse 10250 21 2483 2

Human 8247 41 1287 2

Mont 8361 129 217 2

Kidney 20531 144 1607 2

Table: basic information of data sets
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Clustering results

Data set K classical IF-PCA

Mont 2 .201 .116

Kidney 2 .035 .021

Table: comparison of clustering error rate
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Clustering results

Figure: HC plot(mouse data set)
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clustering results

Figure: result of IF-PCA Figure: result of classical PCA
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clustering results

Figure: error rate by IF-PCA with different number of selected
features(mont)
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